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Jutline of Presentation

= QOverview of Generic Sensor Fusion Problem
— Specific methods
— Isolation fusers
= Projective Fusers
— Class of projective fusers
= Nearest Neighbor Projective Fuser
— Finite-sample performance bound

— Application to sigmoid neural networks, methane hydrates
exploration



Generic Sensor Fusion Problem
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Sensor could be quite generic:

—Hardware device

<Ultrasonic and infrared sensors
—Software module

<Function estimators
—Database

<Archived measurements
—Combination of hardware and st

<Camera and detection software



Finite Sample Guarantees

Known sensor distributions
— If all joint sensor distributions are known, optimal fuser can be
obtained in principle
= Not sufficient to know individual sensor distributions
= Not guaranteed to be easily computable

Only measurements are given
— Performance guarantee limits:
Cannot guarantee “tlose-to-optimal results’*with probability one

— Best possible result:

= With a high probability the measurement-based fuser is at least as good
as the best

P[1(f)?21(f)2?]?27?
computed fuser/ “optimal fuser

= Roughly speaking, fusion problem is estimation of regression (infinite-
dimensional quantity) using only finite set of measurements



verview of Solutions: Finite Sample Guarantees

General Solution
— Showed that the problem is solvable in principle
— Under finiteness of scale-sensitive dimension of fuser class finite sample
guarantees can be provided
Specific Fuser Methods

— Vector space methods
= Linear fusers
= Kurkova3 neural networks

— Sigmoid neural networks
— Non-linear statistical estimators

= Nadaraya-Watson estimator
= regressograms

We developed finite sample guarantees for the fuser

Example: Fuser class forms a vector space of dimension d
— Sample size estimate

%gdln?%?ln%??ln%g

toensure P[I1(f)21(f)?2?]?7?
irrespective of sensor distributions



Isolation Fusers

Method:

1. choose fuser class with isolation property —contains an ident
function for every input variable

2. compute empirically best fuser based on measurements
— Examples:

« Linear and piecewise-linear fusers

= Projective fusers

Performance

— Given enough sample size, fuser is at least as good as bes
sensor in a probabilistic sense

N.S.V. Rao, Information Fusion,
IEEE Trans PAMI,




Function Estimation

roblem: To estimate a function f:[0,1]° ? [0,]]
Based on sample (X, f(X),(X;, f(X,),? (X, f(X)))

or estimate f
Expected error is defined by

1(f) 2 F(X)? f(X))?dR,

Jser Design: Given N function estimators f, f,,? | fN
ympute fuser  f_:[0,]" ? [0,1]

ichthat T (X, 1, 1,7 L 1y)  approximates  f(X)



Projective Fusers - Definition

e Fa N

Method: Fuser f_ using estimators f, 6,7, fy
Partition the input space in to blocks

k
P2{?.,2,? 232,72 [01°,7 2, 2[0,1)°

171

Assign to each block ?i an estimator 1?] such that
fo(X, .2, ) 2 £(X)

forall X ? ’?i fAI
Informally:
— Divide the domain into blocks
— Use one of the estimators in each each block



lllustration

estimator 1 asti

Optimal Fuser

= Compute error regressions of information
sources: project one with lowest local error

« [Fuser is better than best sub-combination

Challenges:
= |n practice only finite measurements are |

given: error regressions cannot be exagtls estimator 1 error of e:

Our results: measurement-based

approximation _ X
fused estimator

— Cellular decomposition method _
— Nearest neighbor projective fuser / \
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Optimal Projective Fuser f¢

ethod:
Compute error regressions of sensors

Project the sensor corresponding to lower envelope of regressions
Blocks are decided by the lower envelope

‘operties:
— At least as good as when applied on a subset of sensors

— Possess isolation property —hence the performance guarantes
— Complementary performance compared to linear fusers
Performance Results

— Need to know the error distributions to exactly compute it

— Based on iid sample only an approximation can be computed

= Asymptotic result: As simple size goes to infinity, fuser is at least as good as
best subset of sensors [Fusion 1999, MFI 99]

= Finite sample result: Given sufficient sample size, fuser is close to optimal with a |
probability [Fusion 2002]




Projective vs. Linear Fusers

.omplementary Performance:
Projective fuser is better if sensors are locally efficient
Linear fuser is better if errors are “Symmetric™’




ample-Based Projective Fuser

lethod:

stimate the errors using adaptive cells method
‘0ject estimators according to lower envelope of estimated
regressions
symptotic Result '(fie)? 1(fe) g5 1?7 ?
— As simple size goes to infinity, fuser is at least as good as
subset of sensors [Fusion 1999, MFI 99]
roperties

Cells sizes must be carefully chosen
Does not provide any guarantee for finite sample




Nearest Neighbor Projective Fuser

Basic Idea

— Decompose into Voronoi regions of Ectimator 1 - |
measurements Esti

— Given a test point N\

= |dentify Voronoi region that contains it
= Use the estimator with least error as a predictor | ——

Performance targ
Computational: polynomial-time computable

Finite-sample result: given finite sample, fuser
performs almost as good as optimal with a high

probability
—first finite sample result for projective fusers Fused estimat N

RF—Q—®




Definition: Nearest Neighbor Projective Fusers:

Jronoi Decomposition:
Decompose domain into blocks V(X,),? ,V (X))
V(X;) consists of all points closer to X, than any other X
ven X:
NN (X) : Index to V(X,) such that X?V(X,)
= simply the Voronoi cell that contains X
iNN (x) :estimator with lowest error at nearest sample point XNN(;

i (X) 2 @rgming f (Xuweo) 2 Fi K )12

i?.,2? ,N

earest Neighbor Projective Fuser fNN

N e

fae (X, B2 F0) 2 F o (X)




Inite-Sample Results: Projective Fusers

eneral Condition: Each estimator fi has finite total variatic

This results includes wide class of estimators:

— Smooth estimators:
= sigmoid neural networks with bounded weights
= potential functions
= radial basis functions
= smooth kernel estimators

— Non-smooth estimators
= K-nearest neighbors
= Regression trees
= Nadaraya-Watson estimator
= Regressograms

Performance Guarantee

PY1(f)?1(f,.)??727




unctions of Bounded Variation

nformally:

listance covered by walking along the function is finite

Examples:

functions on compact domain with finite number of jumps
functions on compact domain with bounded derivative
Lipschitz functions on compact domains

One dimensional: h:[?AA]? ?

Partition A?Y?Yy.?? ?y,?A

Set of all partitions: ?[?A, Al

For all partitions we have bounded ’5 |h(y,)?h(y.,)|? M

k?1

For multi-dimensional, bounded in each dimension



>ample-Size Estimate: Projective Fusers

3t V. be the total variation of fl and v??V

i?1
Given sample of size

2567 2 128V ?
- ? -
22537 7 3

In2(128/?)?ln(16/?);)
We guarantee '
r ~ r
PUI(f) 21 (f0) 227272

iIrrespective of the underlying distributions, |.e. estimators c
be arbitrarily correlated.

Informally, error of f,,is within optimal, namely 1 (f,.) , with
probability 17?7
Implies asymptotic result



)utline of Finite-Sample Bound

N

Embed fusers, f,,and i, in function class of bounded
variation |,

Use Vapnik 3 argument to shOV\é .

P (F) 21 (fe) 2277 Psup ()2 1(9) 72 /25
3g?FV 3

Use fat-shattering index of FV to obtain the sample size

g 3.8 fat,, (? /256)In?(128/22) ?In(16/?)3
Vv
2?2177 —
fate (?) ?1" 9



pplication: Sigmoid Neural Network Estimators

ng neural networks: for function
timation
raining problem is NP-hard

lost training algorithms yield sub optimal
results

ackpropagation algorithm is sensitive to
starting weights and learning rate
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Sigmoid neural network
different starting weigh
and learning rates



d Neural Network Estimators

ast neighbor projective fuser
'ses locally best estimators

lote the worst overall estimator
IS good at certain parts

Linear fuser

Picks a single weight for entire
domain




Embrittlement Predictions
aborator : Jy-An Wang (Nuclear Sci. and Tech. Division, ORNL

Overall Goal: Predict residual defects in materials due to neutron-indu:
damage in light-water reactors

Transition temperature shift —vital indicator of embrittlement le\

— Several predictors available
< Fluence-based models
< Eason3 models
= Reg. Guide 1.99 model
= Feedforward neural network models
= Nearest-neighbor model

Fusion Approach: Combine all the predictors

= (General Electric boiling water reactor data

= |solation Fuser (linear least squares)

— 56.5% and 32.8% reduction in uncertainty plate and weld data, respectively, over
model

= Nearest Neighbor Projective Fuser

— 67.3% and 52.4% reduction in uncertainty in plate and weld data, respectively, ov
best model




Conclusions

resented class of projective fusers:

Optimal projective fuser corresponds to lower envelope of regressi
Only an approximation can be computed based on sample

earest Neighbor Projective Fuser:
sample based approximation to optimal projective fuser
polynomial-time computable
provides finite sample guarantee



