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Generic Sensor Fusion Problem

To design a fuser with 
performance guarantees 
based on measurements

N.S.V. Rao, Journal of Franklin Institute, 1994,1999.
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Sensor could be quite generic:Sensor could be quite generic:
––Hardware deviceHardware device

••Ultrasonic and infrared sensorsUltrasonic and infrared sensors

––Software module Software module 
••Function estimatorsFunction estimators

––DatabaseDatabase
••Archived measurementsArchived measurements

––Combination of hardware and softwareCombination of hardware and software
••Camera and detection softwareCamera and detection software

X and Y  are related by an 
unknown distribution
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Finite Sample Guarantees
Known sensor distributionsKnown sensor distributions
–– If all joint sensor distributions are known, optimal fuser can bIf all joint sensor distributions are known, optimal fuser can be e 

obtained in principleobtained in principle
•• Not sufficient to know individual sensor distributionsNot sufficient to know individual sensor distributions
•• Not guaranteed to be easily computableNot guaranteed to be easily computable

Only measurements are givenOnly measurements are given
–– Performance guarantee limits:Performance guarantee limits:

Cannot guarantee “closeCannot guarantee “close--toto--optimal results” with probability oneoptimal results” with probability one
–– Best possible result: Best possible result: 

•• With a high probability the measurementWith a high probability the measurement--based fuser is at least as good based fuser is at least as good 
as the bestas the best

•• Roughly speaking, fusion problem is estimation of regression (inRoughly speaking, fusion problem is estimation of regression (infinitefinite--
dimensional quantity) using only finite set of measurementsdimensional quantity) using only finite set of measurements

*[ ( ) ( ) ]P I f I f ? ?? ? ?

computed fuser optimal fuser



Overview of Solutions: Finite Sample Guarantees
General SolutionGeneral Solution
–– Showed that the problem is solvable in principleShowed that the problem is solvable in principle
–– Under finiteness of scaleUnder finiteness of scale--sensitive dimension of fuser class finite sample sensitive dimension of fuser class finite sample 

guarantees can be providedguarantees can be provided

Specific Fuser MethodsSpecific Fuser Methods
–– Vector space methodsVector space methods

•• Linear fusersLinear fusers
•• Kurkova’s neural networksKurkova’s neural networks

–– Sigmoid neural networksSigmoid neural networks
–– NonNon--linear statistical estimatorslinear statistical estimators

•• NadarayaNadaraya--Watson estimatorWatson estimator
•• regressogramsregressograms

We developed finite sample guarantees for the fuserWe developed finite sample guarantees for the fuser
Example: Example: Fuser class forms a vector space of dimension dFuser class forms a vector space of dimension d

–– Sample size estimateSample size estimate

to ensure to ensure 
irrespective of sensor distributionsirrespective of sensor distributions
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Isolation Fusers

MethodMethod:   :   
1.1. choose fuser class with isolation property choose fuser class with isolation property –– contains an identity contains an identity 

function for every input variablefunction for every input variable
2.2. compute empirically best fuser based on measurementscompute empirically best fuser based on measurements
–– Examples:Examples:

•• Linear and piecewiseLinear and piecewise--linear fuserslinear fusers
•• Projective fusersProjective fusers

PerformancePerformance
–– Given enough sample size, fuser is at least as good as best Given enough sample size, fuser is at least as good as best 

sensor in a probabilistic sensesensor in a probabilistic sense
N.S.V. Rao, Information Fusion, 2000N.S.V. Rao, Information Fusion, 2000

IEEE Trans PAMI, 2001IEEE Trans PAMI, 2001



Function Estimation 

Problem: Problem: To estimate a function
Based on sample Based on sample 

For estimate For estimate 
Expected error is defined byExpected error is defined by

Fuser DesignFuser Design: Given N function estimators: Given N function estimators
compute fusercompute fuser

such that                                   approximates such that                                   approximates 
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Projective Fusers - Definition

Method: Method: Fuser     using estimators Fuser     using estimators 
Partition the input space in to blocks Partition the input space in to blocks 

Assign to each block Assign to each block an estimator     such thatan estimator     such that

for all for all 
Informally:   Informally:   

–– Divide the domain into blocksDivide the domain into blocks
–– Use one of the estimators in each each blockUse one of the estimators in each each block
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Illustration
Optimal Fuser

• Compute error regressions of information 
sources: project one with lowest local error

• Fuser is better than best sub-combination

Challenges:
• In practice only finite measurements are 

given: error regressions cannot be exactly 
known

Our results: measurement-based 
approximation
– Cellular decomposition method 
– Nearest neighbor projective fuser

Target f(x)

estimator  2estimator 1 

estimator 1

estimator  2

error of estimator 1 error of estimator 2

fused estimator

X

X

X



Optimal Projective Fuser
Method: Method: 

Compute error regressions of sensorsCompute error regressions of sensors
Project the sensor corresponding to lower envelope of regressionProject the sensor corresponding to lower envelope of regressionss

Blocks are decided by the lower envelopeBlocks are decided by the lower envelope
PropertiesProperties:   :   

–– At least as good as when applied on a subset of sensorsAt least as good as when applied on a subset of sensors
–– Possess isolation propertyPossess isolation property –– hence the performance guaranteehence the performance guarantee
–– Complementary performance compared to linear fusersComplementary performance compared to linear fusers

Performance ResultsPerformance Results
–– Need to know the error distributions to exactly compute itNeed to know the error distributions to exactly compute it
–– Based on Based on iid iid sample only an approximation can be computedsample only an approximation can be computed

•• Asymptotic result: As simple size goes to infinity, fuser is at Asymptotic result: As simple size goes to infinity, fuser is at least as good as least as good as 
best subset of sensors [best subset of sensors [Fusion 1999, MFI 99]Fusion 1999, MFI 99]

•• Finite sample result: Given sufficient sample size, fuser is cloFinite sample result: Given sufficient sample size, fuser is close to optimal with a high se to optimal with a high 
probability [Fusion 2002]probability [Fusion 2002]

LEf



Projective vs. Linear Fusers

Complementary Performance: Complementary Performance: 
Projective fuser is better if sensors are locally efficientProjective fuser is better if sensors are locally efficient
Linear fuser is better if errors are “symmetric”Linear fuser is better if errors are “symmetric”



Sample-Based Projective Fuser 

Method: Method: 
Estimate the errors using adaptive cells method
Project estimators according to lower envelope of estimated Project estimators according to lower envelope of estimated 

regressionsregressions
Asymptotic Result Asymptotic Result as 

–– As simple size goes to infinity, fuser is at least as good as beAs simple size goes to infinity, fuser is at least as good as be
subset of sensors [subset of sensors [Fusion 1999, MFI 99]Fusion 1999, MFI 99]

PropertiesProperties
Cells sizes must be carefully chosenCells sizes must be carefully chosen
Does not provide any guarantee for finite sampleDoes not provide any guarantee for finite sample
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Nearest Neighbor Projective Fuser
Basic Idea
– Decompose into Voronoi regions of 

measurements
– Given a test point

• Identify Voronoi region that contains it
• Use the estimator with least error as a predictor

Performance
Computational: polynomial-time computable
Finite-sample result: given finite sample, fuser 
performs almost as good as optimal with a high 
probability
–first finite sample result for projective fusers Fused estimate

Estimator 1
Estimator 2

target



Definition: Nearest Neighbor Projective Fusers:

Voronoi Voronoi Decomposition: Decomposition: 
Decompose domain into blocks Decompose domain into blocks 

consists of all points closer to      than any other consists of all points closer to      than any other 
Given X:   Given X:   

: index to          such that : index to          such that 
•• simply the simply the Voronoi Voronoi cell that contains Xcell that contains X

:estimator with lowest error at nearest sample point:estimator with lowest error at nearest sample point

Nearest Neighbor Projective FuserNearest Neighbor Projective Fuser
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Finite-Sample Results: Projective Fusers 

General Condition: General Condition: Each estimator      has finite total variationEach estimator      has finite total variation
This results includes wide class of estimators:
– Smooth estimators: 

• sigmoid neural networks with bounded weights
• potential functions
• radial basis functions
• smooth kernel estimators

– Non-smooth estimators
• K-nearest neighbors
• Regression trees
• Nadaraya-Watson estimator
• Regressograms

Performance Guarantee
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Functions of Bounded Variation
Informally: Informally: 
Distance covered by walking along the function is finiteDistance covered by walking along the function is finite

Examples: Examples: 
functions on compact domain with finite number of jumpsfunctions on compact domain with finite number of jumps
functions on compact domain with bounded derivativefunctions on compact domain with bounded derivative
LipschitzLipschitz functions on compact domainsfunctions on compact domains

One dimensional:

Partition

Set of all partitions: 

For all partitions we have bounded

For multi-dimensional, bounded in each dimension
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Sample-Size Estimate: Projective Fusers 
Let      be the total variation of       and Let      be the total variation of       and 

Given sample of size Given sample of size 

We guaranteeWe guarantee

irrespective of the underlying distributions, I.e. estimators coirrespective of the underlying distributions, I.e. estimators co
be arbitrarily correlated.be arbitrarily correlated.

Informally, error of      is within optimal, namely        , witInformally, error of      is within optimal, namely        , with h 
probability  probability  

Implies asymptotic resultImplies asymptotic result
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Outline of Finite-Sample Bound

1. Embed fusers,      and     , in function class of bounded 1. Embed fusers,      and     , in function class of bounded 
variationvariation

2. Use 2. Use Vapnik’s Vapnik’s argument to showargument to show

3. Use fat3. Use fat--shattering index of         to obtain the sample sizeshattering index of         to obtain the sample size

N̂Nf LEf

VF

? ?ˆ ˆ( ) ( ) sup | ( ) ( ) | / 2
V

NN LE
g F

P I f I f P I g I g
?

? ?? ?? ? ? ? ? ? ?? ?
? ?? ?

VF
2 2

2

256
18 ( / 256) ln (128 / ) ln(16 / )

VFfat ?? ?? ? ?? ??

( ) 1
2VF
V

fat ? ? ?
?



Application: Sigmoid Neural Network Estimators

Training neural networks: for function for function 
estimationestimation
Training problem is NPTraining problem is NP--hardhard
Most training algorithms yield sub optimal Most training algorithms yield sub optimal 

resultsresults
Backpropagation Backpropagation algorithm is sensitive to algorithm is sensitive to 

starting weights and learning ratestarting weights and learning rate

training data test data

Sigmoid neural networks: 
different starting weights 
and learning rates

worst
 ove

rall 

estim
ator



Fused Neural Network Estimators

Nearest neighbor projective fuserNearest neighbor projective fuser
Uses locally best estimatorsUses locally best estimators
Note the Note the worst overall estimatorworst overall estimator

is good at certain partsis good at certain parts

Linear fuserLinear fuser
Picks a single weight for entire Picks a single weight for entire 

domaindomain



Embrittlement Predictions
Collaborator : Jy-An Wang (Nuclear Sci. and Tech. Division, ORNL)

Overall Goal:Overall Goal: Predict residual defects in materials due to neutronPredict residual defects in materials due to neutron--induced induced 
damage in lightdamage in light--water reactorswater reactors

Transition temperature shift Transition temperature shift –– vital indicator of vital indicator of embrittlement embrittlement levellevel
–– Several predictors availableSeveral predictors available

•• FluenceFluence--based models based models 
•• Eason’s modelsEason’s models
•• Reg. Guide 1.99 modelReg. Guide 1.99 model
•• Feedforward Feedforward neural network modelsneural network models
•• NearestNearest--neighbor modelneighbor model

Fusion Approach: Combine all the predictorsFusion Approach: Combine all the predictors
•• General Electric boiling water reactor dataGeneral Electric boiling water reactor data

•• Isolation FuserIsolation Fuser (linear least squares)(linear least squares)
–– 56.5% and 32.8% reduction in  uncertainty plate and weld data, r56.5% and 32.8% reduction in  uncertainty plate and weld data, respectively, over best espectively, over best 

modelmodel
•• Nearest Neighbor Projective FuserNearest Neighbor Projective Fuser

–– 67.3% and  52.4% reduction in uncertainty in plate and weld data67.3% and  52.4% reduction in uncertainty in plate and weld data, respectively, over , respectively, over 
best modelbest model



Conclusions 

Presented class of projective fusers: Presented class of projective fusers: 
Optimal projective fuser corresponds to lower envelope of regresOptimal projective fuser corresponds to lower envelope of regressionssions
Only an approximation can be computed based on sampleOnly an approximation can be computed based on sample

Nearest Neighbor Projective FuserNearest Neighbor Projective Fuser::
sample based approximation to optimal projective fusersample based approximation to optimal projective fuser
polynomialpolynomial--time computabletime computable
provides finite sample guaranteeprovides finite sample guarantee


