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Outline of Presentation

• TCP Simplified Dynamics
• Composition Model
• Experimental Results
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Network Transport (Simplified View)
• Messages from source get broken into packets

• Packets are routed over the network
– Routes are decided by routers and service providers in Internet
– Source has very little control on paths traversed by packets

• Most network transport is controlled by two protocols
– TCP: Transport Control Protocol

• Ensures reliable delivery – retransmits delayed or lost packets
• Vast majority of Internet traffic

– UDP: User Datagram Protocol
• Sender puts datagram on the network to be routed
• No further action is taken –lost packets are lost forever

source destinationR
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R R

message message  
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End-to-End Transport Dynamics are Important

• TCP performance: High bandwidth for large data transfers
– initial transients can force TCP into congestion control, achievable bandwidth 

is very limited

• Control of end devices: Remote control of instruments
– Jittery dynamics will destabilize the control loops
– Will not be able to effectively execute interactive simulations

Very Limited insights about end-to-end dynamics
• Chaotic TCP window dynamics (Veres)
But observations are a give-away
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Traditional View: Dynamics of TCP

Transport Control Protocol (TCP) Outline
– Uses window mechanism to send W bytes/sec
– Dynamically adjusts W to network and receiver state

– Keeps increasing is no loses
– Keeps shrinking if losses are detected

• Slow start phase: 
– W increase exponentially until W_t or loss

• Congestion Control:  
– linearly increase W with delivered packets
– Multiplicatively decrease with loss

Slow start:a
Congestion control:1/w

time

Early loss slows 
throughput

timetime

W
W_t

W
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No Competing Traffic and no delays: W is periodic 

TCP has a stable cycle under no network delays
– Prolonged Unstable regime:

• W bytes increases with acknowledgments

– Instantaneous stabilization:
• Bring W to a lower value with a loss as soon as bottleneck BW is exceeded

Congestion control:1/w

time

W

steady state
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Competing traffic delays: W is not guaranteed to be periodic 

Notification of losses are delayed
Meanwhile packets are sent which will overflow – multiple losses

• W bytes increases with acknowledgments

time

W

Network delays: 

Small buffers at routers: 
Packets exceeding the bandwidth are buffered

Network delays and competing traffic will generate complicated profiles of W
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Competing traffic, Network Delay, Router Buffers

Complicated traffic can generate complicated TCP dynamics
Question: Can simple traffic generate complicated trajectories ?
Yes, under certain conditions
– Net-Effect: The stabilization part of the ideal case is prolonged, and is 

replaced by another unstable regime.
– To see this effect we introduce end-to-end packet delay

State-Space of TCP:
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TCP Competing with UDP 
2 simulation) As CBR rate is varied

TCP competing with UDP/CBR at 
the router generates a variety 
of dynamicsTCP/Reno

sink

UDP/CBR

Router

Poincare phase plot:
Window-size W(t) vs. 

end-to-end delay D(t)

2Mb, 10ms,DT

2Mb, 10ms,DT

1.7Mb, 10ms,DT

D(t)

W(t)

W(t)

time

UDP/CBR=1Mbs
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TCP Competing with UDP

UDP/CBR: 0Mbs

UDP/CBR: 0.5Mbs

UDP/CBR: 1.7Mbs

UDP/CBR: 1.0Mbs
UDP/CBR: 1.7Mbs

UDP/CBR:1.75Mbs
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Chaotic Dynamics of TCP

Competing TCP streams: Window dynamics are chaotic
– Hard to predict – resemblance to random noise
– Hard to conclude from experiments – nearby orbits move faraway later
– Hard to characterize – chaotic attractor

• Poincare map of two window sizes
– Two-streams case
– Four streams case

Veres (2000) did not rigorously 
establish chaos in a formal sense

Attractor could have been 
generated by periodic orbit with large period

We are attempting to show 
snapback repellers in TCP equations 

formal result 
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Noisy Nature of TCP
(simulation)

Simple random traffic generates complicated attractors 
– TCP reacts to network traffic randomness 

• Jittery end-to-end delays
– Do not need chaos to generate complicated attractors 

• Poincare map of message delay vs. window size

TCP source Router: uniform 
random drops destination
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Jitter in End-to-End Delays
(wireless LAN - Internet measurements)

• Source: constant sized messages sent at regular intervals

time

Message size

Measurements from SC2001 booth to ORNL:  Wireless network: 10K msgs - sent 25 times 
at 1 min intervals - approximately every half hour – 13 measurements

Scale: 0-140 sec Scale: 0-150 Scale: 0-14 sec Scale: 0-7 sec
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Measurements from SC2001 booth to ORNL:  Wireless network
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Internet Measurements from ORNL to OU
(wired ~1000 mile Internet connection)

Time vs. end-to-end delay for fixed size messages sent regularly

If messages are control signals to an end-instrument, the jitter can 
destabilize the control-loop
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Network Measurements

TCP/IP end-to-end delivery times vs message size

ORNL, 6010

UC Riverside

U Oklahoma

LSU

U TennORNL - LAN
Old Dom. U

Message size in kbytes

End-to-end delay (sec)
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Internet Measurements:Four Daemons: Internet Measurements:Four Daemons: 
Four TCP streams: message optimally divided amongFour TCP streams: message optimally divided among

Two parallel TCP streamsTwo parallel TCP streams
Two streams via daemon routersTwo streams via daemon routers

Results:Results:
Hourly readings in a week:Hourly readings in a week:

Average 40% reduction in endAverage 40% reduction in end--toto--end delayend delay
Require no support from the network routers or service providersRequire no support from the network routers or service providers
Daemons are userDaemons are user--level programs level programs –– can be executed using simple user accounts or on can be executed using simple user accounts or on 
free telnet sitesfree telnet sites

EndEnd--toto--End Delay ReductionEnd Delay Reduction

Ongoing Work:Ongoing Work:
••Optimization of network measurementsOptimization of network measurements

••Statistical design of experimentsStatistical design of experiments
••reduce measurement nodes and ratesreduce measurement nodes and rates
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Internet Measurements: End-to-End Delay Dynamics Control

Objective: 
Achieve smooth end-to-end delay 

1. Reduce end-to-end delay using two-paths via daemons:  
OU,  ORNL-ODU_OU

2. Filter the output at destination

Destination

U. Oklahoma
ORNL: source

Old Dominion Uni.

Internet ConnectionInternet Connection

ORNL

U. Oklahoma

XX--axis: message sizes (bytes)axis: message sizes (bytes)

YY--axis: endaxis: end--toto--end delay (sec)end delay (sec)

ORNL
U. Oklahoma

Old Dominion Uni.

Funded by: 

DARPA NMS Program

DOE High-performance n/w program
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Conclusions

• Networking Aspects
– Study of end-to-end dynamics of transport mechanisms

• Multiple paths, parallel TCP, TCP tuning and adaptation
• Complex and chaotic regimes of transport methods

– Develop method for controlling dynamics
• End-filters, multiple throttles, adaptive performance tuning

• High-Performance Cooperative Computing Environments
– Have Acute network performance needs

• Not met by current operational networks – infrastructure and middleware
• Will need targeted efforts; Will not be incidentally solved by other efforts

– Provide supportive environments
• Customized instruments can be installed to support

– Avoid Congested parts
– Aggregated bandwidths
– Controlled dynamics


