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Abstract — TCP is the most widely used protocol
in computer networks and accounts for a large frac-
tion of the Internet traffic. TCP deployed over wide-
area networks together with the routers represents a
distributed non-linear dynamical system with delayed
feedback. We characterize the state space of TCP wus-
ing congestion window size, end-to-end packet delay,
and also the number of packet retransmissions and ac-
knowledgments. We present an analytical model for
the dynamics of a simplified version of TCP by a suit-
able composition of two unstable linear-like regimes.
This model generates bounded trajectories with a com-
plicated attractor. We show that its dynamics embed
a tent-like map for the update of window sizes which
generates chaotic dynamics. We present simulation re-
sults that indicate chaotic dynamic behavior of TCP in
interacting with drop-tail routers with small buffers and
background UDP traffic. We also present wireless and
wireline Internet measurements that indicate chaos-like
end-to-end delay response for fived size messages sent
at reqular intervals.

Keywords: computer networks, transport control
protocol, chaotic dynamics, tent map.

1 Introduction

The Transport Control Protocol (TCP) is a con-
nection oriented network mechanism that provides re-
liable data transport from a source to a destination
over the IP (Internet Protocol) networks [13]. TCP
is the most widely used protocol for computer net-
works, and accounts for a vast majority of the traf-
fic over the wide-area networks, particularly the In-
ternet. TCP is extremely effective in providing reli-
able transport of bulk data, but it has not been as
effective in the control applications over long-haul net-
work connections. For example, it is quite challenging
to achieve a stable closed-loop control of a manipula-
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tor located on the west coast from a location on the
east coast of United States. Often, the control of fast
mechanical devices over long-haul Internet connections
(using socket-based TCP data transfers) suffers from
two problems: (a) lack of responsiveness of the device,
and (b) presence of high frequency components that
produce uncontrolled motions. The conventional con-
trollers designed for electrical connections with very
short delays are particularly vulnerable when imple-
mented over the Internet. The difficulty is that TCP
is known to exhibit complicated dynamics over vari-
ous time scales. While such behavior does not directly
affect the large bulk transfers, it can have serious neg-
ative effects on the controllability and stability of con-
trol loops implemented over wide-area networks.

The next generation of network applications, such
as instrument grids, remotely deployed mobile robot
teams and interactive simulations distributed on su-
percomputers, require stable control mechanisms over
wide-area networks. Thus it is important to under-
stand the dynamics of TCP at the time scales appro-
priate for the application at hand. TCP dynamics also
play a crucial role in other scenarios that require high
throughputs over large time scales. For example, the
parallel-TCP utilizes the collective dynamics of TCP
to achieve throughput rates that are significantly larger
than a single TCP stream [17, 20]. Also, methods such
as the dynamic right-sizing manipulate the TCP win-
dow dynamics to overcome the buffer size limitations
[5]. In this paper, however, our main focus is the dy-
namics at the time scales of the order of congestion
window-size updates. This time scale for wide-area
networks is typically of the order of few milliseconds
but can be as large as hundreds of milliseconds depend-
ing on the connection and traffic levels.

TCP dynamics have been studied under various for-
mulations, and its complicated nature been observed in
many cases. The recent work of Veres and Boda [23]
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Figure 1: TCP interacting with a drop-tail router.

illustrated, using ns-2 simulations, the chaotic dynam-
ics of two competing TCP streams interacting with a
single router using simulation. They showed that the
congestion window dynamics of both streams generate
chaotic time series, but no formal explanations, such
as routes to chaos, have been presented there. Ran-
jan and Abed [14] showed that TCP interacting with
a Random Early Detection (RED) routers exhibits pe-
riodic doubling which eventually leads to chaos in the
buffer occupancy rates. In this paper, we restrict our
focus to the formulations related to the above two ref-
erences, namely TCP interacting with a router in pres-
ence of indigenous traffic as shown in Figure 1. In par-
ticular for simulations, we consider a basic version of
TCP interacting with drop-tail routers in presence of
background UDP traffic.

From a dynamics view point, TCP deployed over
wide-area networks together with the routers repre-
sents a non-linear dynamical system with delayed feed-
back. In general, such systems can be chaotic even
under very simple formulations, and in fact it is less
often that such system are non-chaotic [2]. Further-
more, the feedback delay plays a crucial role in non-
linear systems [9]: for ordinary differential equations,
a 1-dimensional system with delayed feedback can be
chaotic, whereas without feedback it takes at least the
dimensionality of 3 to generate chaos [24].

TCP together with its interactions with the routers
is a very complicated dynamical system, and it is ex-
tremely hard to capture all its details using concise
models. In particular, a single differential equation
that is amenable to the standard tools from chaos the-
ory [12] is not obvious. Instead, we make several sim-
plifications in TCP and traffic behavior to obtain a
model that is similar to some of the known chaotic
systems. Our model and analysis method is similar
in spirit to that studied by Sparrow [21], where a sys-
tem composed of two “glued” unstable linear systems
exhibits chaos under certain conditions.

We characterize the state space of TCP using the
congestion window size, end-to-end packet delay, the
number of re-transmissions and acknowledgments. We
model TCP by a suitable composition of two unstable
linear-like regimes each of which generates bounded dy-
namics with a very complicated attractor. In regime
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Figure 2: Simulation setup.

one, the congestion window-size constantly grows in
response to the successful packet delivery, while the
packet delay is relatively stable. This regime is fol-
lowed by the second regime, wherein the packet delay
becomes unstable due to overflowing of router buffer
and in response the window-size is drastically reduced.
TCP dynamics move back and forth between these two
regimes and are cyclic in the absence of delays and
buffers at the routers. In particular, if the network
delays are negligible, the second regime is extremely
short-lived resulting in the familiar saw-tooth behavior
of TCP for large flows. The existence of network delays
prolongs the duration of regime two, which when cou-
pled with the background traffic and small buffers gen-
erates very complicated dynamics under certain condi-
tions.

We show that the dynamics of the window-size up-
dates embed a map which is qualitatively similar to the
well-known tent map [2] that generates chaotic trajec-
tories. The former, however, is more complicated and
has gaps in certain regions of the domain. Full analysis
of this map will be presented in a forth-coming paper.

We adopt the following informal working definition
of chaos (more formal treatments can be found for
example in [24]): (a) time trajectories include non-
periodic orbits; (b) trajectories are very sensitive to in-
put conditions, namely, trajectories starting at nearby
points move significantly farther apart in time, and (c)
the attractor set is very complicated.

We present two types of experimental results to com-
plement our analysis.

(a) Using ns-2 simulation we explicitly illustrate the
chaotic behavior by computing the time series
of window sizes and packet delays together with
their Fourier spectra and the attractor sets in the
Poincare plane. We consider two specific cases: (i)
long message streams where the source has unlim-
ited amount of data to send, and (ii) short bursts
wherein messages are sent in an evenly spaced
on/off streams. In both cases the simulation re-



sults show chaos-like behavior, more so in the lat-
ter as to be expected.

We also present Internet measurements that in-
dicate chaos-like dynamic behavior exhibited by
TCP both using wireless and wireline connections.
Here we send a fixed size message at regular in-
tervals and measure the end-to-end delay for each
message. These measurements indicate very com-
plicated dynamic profiles for the end-to-end delay
in response to a stream of evenly spaced messages
of fixed size.

We wish to point out the obvious limitations of our
results. First, we only discuss a model for a simplified
TCP and highlight the conditions for chaotic dynam-
ics. The experimental results thus may not exactly
match the results predicted by the model. In particular
it is not clear if the chaotic behavior will be dominant
for TCP in real-life network conditions. Particularly
for Internet measurements, the collected information
is very limited due to the lack of access to the internal
TCP parameters. Nevertheless, both analytical and
experimental results point to rather complicated dy-
namics of TCP, particularly, at the time scales needed
for control applications.

This paper in organized into two complementary
parts. In Section 2, we describe the state-space of
TCP, and its dynamics in dealing with a bottleneck
link with a small buffer. In Section 3, we describe
simulation results based on ns-2 followed by the mea-
surements collected over Internet.

2 Dynamics of TCP

In this section we first describe a simplified model of
TCP, followed by a description of its state space vari-
ables. Then we show the decomposition of TCP dy-
namics into two distinct unstable regimes, which gives
rise to chaotic dynamics.

2.1 Simplified TCP Model

TCP provides a connection-based reliable transport
mechanism from a source to a destination [13]. The
sender interacts with the destination to ensure a reli-
able delivery of packets; each received packet is specif-
ically acknowledged by the destination. At any given
time, there are no more than a certain number of un-
acknowledged packets, given by the window size, at
the source. These include the packets that are in
flight, dropped at a router or destination, or whose
acknowledgments have been delayed or lost. The in-
dividual packets and their acknowledgments can po-
tentially travel different paths and delayed by different
amounts (indefinitely if they have been dropped). The
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Figure 3: Top and middle plots show w(t) and e(t) vs
t, respectively, and bottom plot shows w(t) vs e(t).

packets are put into the proper order at the destina-
tion. The receiver maintains a certain window, called
the receive window or buffer, of packets which are not
in the correct order. Packets arriving at the destina-
tion when the receive buffer is full are simply dropped.
Source maintains the flow window which corresponds
to the receive buffer. The packet flow rate is restricted
by the flow window which it typically fixed at the time
of initiation of the connection.

The source attempts to adjust its sending rate in
response to the traffic condition on the connection,
as per a process called the congestion control. There
are a large number of variations of the basic TCP [6]
in the manner the congestion control is implemented.
We restrict our focus on a simplified model of the ba-
sic version that was originally described in [8]. TCP
maintains the congestion window w(t) which limits the
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Figure 4: Attractor in w(t) — e(t) Poincare plane as
UDP traffic is increased from 0 to 1.6 Mbps

number of unacknowledged packets at the source (in
addition to the flow window constraint). Since flow
window is fixed in the basic version, the dynamics are
due to the congestion window; note however, if meth-
ods such as dynamic right-sizing combined with paral-
lel streams [16] are applied, the dynamics are not solely
dependent on congestion window alone.

2.2 Dynamic Regimes of TCP

TCP responds to the network traffic by adjusting
w(t) which in turn controls its flow rate. TCP dy-
namics consist of two phases as shown in the top plot
of Figure 3: (a) initial slow-start phase, and (b) the
subsequent congestion control phase. During the slow
start phase the window size grows fast until a loss is
inferred or a set threshold W; is reached. In congestion
control phase, w(t) is incremented with each acknowl-
edgment until a loss occurs, and then it is reduced by
half. The value of w(t) has a significant effect on the
packet end-to-end delay (defined formally in the next
section). If w(t) is small most messages will reach the
destination and hence packet delay is fairly stable. At
the other extreme, if w(t) is large, losses and retrans-
missions occur which increase the end-to-end packet
delay.

Consider that the delays are extremely small such
that source knows immediately The congestion window
size w(t) is recomputed based on the response to the
packets sent. After every acknowledgment of a new
packet, w(t) is recomputed as follows:

if w < Wy, then w < w + 1 during slow start
else w + w + 1/w during congestion control

After a loss is inferred at the source, the window size
is reduced by half such that w < w/2. The above
method is referred to as the Additive Increase and

% {1 i i [1 il

4.0000 | 1 | il | ]
10000 T i T
P i I I D
sz R
20000 \ i il \ r
3:% \

oo 1

Fpssegumn

:x I | Iy | i\H Lt
v T i, T
ss.0000 [N I
A R A A A A M
s B A I i
s I AV (AN
R T I Iinn I
J =
750000 NI y
00000 I N [
es.0000 al
i ] M

200000 — |\

250000 i

10.0000 15.0000

Figure 5: Long TCP stream with UDP rate of 0.5Mbps.

Multiplicative Decrease (AIMD) method for conges-
tion control. We make the assumption that the loss
is inferred at the source almost instantaneously and
the acknowledgments are not lost. This is a simplified
description of the congestion control but captures the
essential components of TCP needed here.

2.3 Dynamic Regimes of TCP

In the congestion control phase, there are two dis-
tinct regimes denoted by R; and R as typified in the
top plot of Figure 3. In Ry TCP starts with a low value
of w(t) and keep incrementing as along as the packets
are being acknowledged. When packet loss is inferred
due to explicit notification or time-out, regime R, is
entered, wherein w is drastically reduced, particularly
so in case of multiple losses.



2.4 State-Space Characterization of

TCP

In addition to w(t), we characterize the TCP dy-
namics using three other variables. Let the time in-
stant t;, called the epoch, correspond to the time a
packet transmission started by TCP for first time for
this packet. For epoch t1, let e(t1) denote the end-
to-end delay of the packet under the assumption that
the acknowledgments are not lost. We extrapolate e(t)
for ¢ in between two consecutive epochs t; ans ts by
e(t) = e(t1). Let r(t) and a(t) denote the number of re-
transmissions and acknowledgments, respectively since
the start; note that they both are non-decreasing func-
tions of ¢. Usually, the sending rate of TCP is specified
by w(t) per round trip time; for simplicity of presenta-
tion we assume that w(t) has been scaled for unit time.
Thus the number of packets sent from the source dur-

Ts
ing time interval [Ty, T5] is given by [ w(t)dt.
T

We consider that TCP is responding to a simple net-
work scenario as in Figure 1 with a single bottleneck
link with maximum packet delivery rate of wy. The
packet transmission through this link is controlled by
by a drop-tail router with buffer size B,. There is
an underlying traffic that arrives at the router which
competes for the link bandwidth and buffer space. Let
B(t) denote the number of elements in the buffer at
time t with B, — B(t) denoting the free buffer space.
We assume that there is a processing delay of a packet
at the router that increases slowly at a rate y with the
sending rate at the source.

Consider that there is no competing traffic at the
router and source rate is fixed (by some non-TCP
mechanism) such that w(¢) = wy < ws. Then no pack-
ets will be dropped and dynamics of w(t) are constant
at wp. In general wp is not known and varies with the
competing traffic. Roughly speaking, TCP attempts to
estimate wy, and to keep w(t) lower than the estimated
value to avoid packet losses and retransmissions.

Consider that the delays are extremely small such
that source knows immediately after a packet is
dropped and also that B, = 0. In such case, dynamics
of w(t) for TCP are periodic: in regime Ry, w(t) starts
around wyp/2 and increases with the acknowledgments
until it exceeds wy; then it infers a single packet loss
and enters regime R., where w(t) is reduced by half.
Here regime Ry is very short lived since it is the re-
sult of a single instantaneous loss. Now consider that
the delays are non-zero and it takes 77 units of time
before the loss is inferred since the source rate exceeds
the available bandwidth. Consider that w(t1) = ws
such that at time ¢; the sending rates becomes equal

to the bottleneck bandwidth. TCP sends

t1+T1

Nty t1+T1]) = w(t)dt

t1
packets in the interim period [t1,%; + T3] of which

t1+T1

ng = (w(t) — we)dt = [y, ¢ +7) — woT1]+

t1

will be dropped, where [z]4 is z if z > 0 and is 0
otherwise. If buffer size is non-zero, then no packets
will be dropped until t = ¢; + ¢, such that

t1+tB,

B, = [w(t) — wp)4dt

t1

if the entire buffer B, is available. Notice that the
availability of buffer delays the time the packet is
dropped by tp_ in this case. Thus the number of pack-
ets dropped will be

t1+T

ng, = [w(t) — wp]4+dt (2.1)

t1+iB, gy

for tp, < Tj. If the entire buffer is not available, the
computation of the number of dropped packets is more
involved. Let t, denote the time the packet that left the
source at time t; reaches the buffer. Then let t; > t;
be the earliest time such that the packet sent from
source at t, arrives at full buffer at time ¢y such that
B(ty) = B, i.e. earliest time that the packet leaving
the source faces a full buffer. Let ws(t) denote the
rate measured at the source with which the packets
will eventually pass through the bottleneck link. Note
that if there is no competing traffic we have the simple
relation

w(t) ifw(t) <wp
wp  if w(t) > wy

ws(t) = {

Then the number of dropped packets is given by

ty+T1
ny = (w(t) — ws(t))dt.

ty

Again note that the available buffer space delays the
packet loss by tme t, < Tg_, and since wg(t) < wp we
have ny > np,. Then after all the n; dropped packets
are accounted for, the resultant window-size is set to
w(ty)/2™ for the regime Rs.
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2.5 Dynamic Regimes of TCP

Consider that the source is sending an infinitely long
message. In case of zero delays, TCP dynamics in con-
gestion control mode constitute a stable cycle with pe-
riod T, + Tr,, where Tz, is the duration of regime
R;. This stable cyclic behavior is well-known in TCP
literature as shown in the top plot of Figure 3 which
corresponds to the ns-2 simulation with no background
UDP traffic; despite its ubiquity in literature, we ob-
served such nice periodic behavior only under very
special conditions in simulation. The corresponding
packet end-to-end delay is shown in the middle plot
of Figure 3 where in e(t) increases slowly during Tk,
but jumps in large steps briefly due to retransmissions;
nevertheless, it is still cyclic. In the bottom plot of
Figure 3, we show the periodic sampling of e(t) and
w(t) corresponding to the Poincare map in w(t) —e(t)
plane. After an initial transient period, the trajecto-
ries of w(t) and e(t) settle into periodic motions, and
the corresponding attractor in w(t)—e(t) plane is rep-
resented by a closed curve.

We can conceptualize the dynamic behavior of TCP,
in term of the alternating regimes R; and Rz, which
are of varying duration in general. For ¢ corresponding
to R1, the dynamics can be approximated locally as
follows

w1 [ ek
de — ,U@

t - dt
da da
dt dt

Note that 9 (t) = 0 during this period, and the ac-
knowledgments arrive at a non-zero rate. Computa-
tion of Eigenvalues of the Jacobian matrix shows that
at least one of them will have positive real part; hence
the system is unstable. One can intuitively draw such
conclusion since the arrival of acknowledgments con-
stantly increases w(t) at a local rate of 1/w and also

increases e(t) at a slow rate of .

Now consider the regime Ro wherein the source in-
fers a packet loss due to the buffer overflow. The pack-
ets sent during (¢, t1 +7%) will result in overflow where
w(ty) = wy, for ¢; in Rq; the exact number dropped
packets depends on the occupancy of the buffer. The
behavior can be approximated locally by

dw -
1 27 dt
de | — | Gdr
dr i
dt e

for some 7 that depends on the delays. In this regions
da(t) = 0 and 9 > 0. Intuitively, this is an unstable
regime since the packets are dropped which increases
e(t) and drastically reduces w(t). This can also be
verified by explicitly computing the Eigenvalues of the

Jacobian matrix.
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Figure 7: Long TCP stream with UDP rate of 1.0Mbps.

The TCP dynamics are due to the “gluing” together



of the regimes R1 and R2. The above equations in re-
gion R4 can be derived by ignoring the control terms
in the fluid models of [11, 7] which are known in the
literature. The dynamics in region Ry are a direct
result of using e(t) as a state variable, which plays a
very critical role in our analysis; we are unaware of ear-
lier works using this variable and highlighting its role.
Note that both regimes are unstable in that there is no
stationary point in either. Thus the trajectories in one
regime will enter the other and vice versa thereby gen-
erating bounded trajectories. The period behavior is
one of the way such trajectories can manifest but back-
ground traffic coupled with small buffer sizes result in
more complicated trajectories. Such behavior appears
not only in the time series of w(t) and e(t) but also
in the attractor and the Fourier spectra of e(t) as will
be discussed in the simulation results in the next sec-
tion. Note that as the background traffic is varied the
attractor, which is a simple curve in Figure 3 becomes
much more complicated as in Figure 4. The boundary
between the two regimes is defined by the transition
between the increasing and decreasing values for w(t).
We identify a particular subset of the state space where
w(t) reaches a value that just causes buffer overflow in
regime Ry. Under no delays and buffers this condi-
tion is met when w(t) = wsp, and in general is given
by ng = 0 in Eq (2.1), which is not easily visualized.
As w(t) is increased beyond this value in Ry, TCP will
infer loses and transit to regime R5. The resultant
w(t) value in R, depends on ng given by w + w/2"4,
which in turn depends on B(t) during the appropriate
period.

To understand the time evolution of w(t) we define
w-update map M : [1,Wpax] — [1, Whax] such that
M (w;) = wiz1 gives the earliest changed value of w(t)
since the time the condition w(t) = w; is met. Let
w; € R, for j = 1,2 denote that when w(t) = w;, TCP
is in regime R;. Then this map is specified as follows:

wi+1/w,~ if’Ll)iGRl,U)z'+1 € Ry
’UJ'/QT” if w; € Ry Wit1 € Ro

M(w:) = i tw; >, Wi
(wi) wi/Q"i if w; € Ro,wip1 € Ro
w; + 1/w; if w; € Ro,wip1 € Ry

where n; is the number of packet losses inferred dur-
ing the period. In R; we have n; = 0 hence it can be
represented as a simple map. In R, it is more com-
plicated and can be visualized as in Figure 6. For
w(t) > wy, there could be packet losses and but w(t)
attains a value higher than wy. This process can
be imagined in terms of a set L along which n; in-
creases together with w(t). At any point on this set
L, corresponding to (w;,n;) the map M is specified
by M (w;) = w;/2™. The plot of M can be imagined
along the set L x [1, Nmax] so that L forms the x-axis
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Figure 8: Long TCP stream with UDP rate of 1.5Mbps.

and M (w;41) is along the y-axis. Empirical computa-
tion of M is shown in Figure 10 as a function of w;
alone based on the simulation results in Section 3.1;
note however that this map reflects only the limited
number of simulated trajectories.

Periodic trajectories can be easily generated as il-
lustrated in the Figure 6 in which the trajectory stays
in n; = 0 plane for part of the time and on the
set L for the rest of the time in a cycle. This map
shares some of the basic properties of the tent map
[2] in that it has a monotonically increasing part in
n; = 0 plane and a decreasing part in the half plane
n; > 0. The map M is more complicated due to
the presence of n; which makes it two-dimensional in
the half plane n; > 0. It is instructive to visualize
the map M in terms of a family of maps such that
My 2 [0, Winax] X [0, Nmax] = [0, Winax] X [0, Nmax], is
the two-dimensional map obtained in case of no back-
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ground traffic and buffer size b, 0 < b < B, i.e. entire
buffer is available for this TCP stream as shown in Fig-
ure 11. Due to non-zero delay, w(t) exceeds wy at time
t; for a time period T which will result in the over flow
of

t1+T

no() = [ ()~ w)a

1
packets. Then Mp(w(ty +T)) = w;/2™ whose value
depends on T'. This map can be imagined along a
locus Ly of all points given by {(w(t1 +t),no(t)) : t €
[0,T]}. The map My is defined at any point on Lg as
Mo(w(t; +1)) = w(t; +t)/2"°®). We similarly define
the locus Lj when the buffer size is b which is entirely
available. Let t; denote the period during which w(t;)
increases before first packet is dropped such that

t1+tp
b= (w(t) —wgq)dt.

t1
Then the number of overflown packets is given by

t1+tp+T
ny(T) = (w(t) — wp)4dt.

ti+ts

Then the Mj is defined as My(w(ty +ty +T)) = 27(T)
whose value depends on T'. Then we define the original
map M by using M, with the appropriately available
buffer size b. The Poincare iterates {w;} under M de-
pend on the available buffer space when w(t) is in the
regions R and is given by Mp__p(;). Any trajectory
of w(t) stays in in the plane n; = 0 while incurring
loses and transits to a locus that lies in between Lg
and Lp_ for a duration determined by B(t) and the
delay to the buffer. Then it reduces w(t) in response
to the resultant loses and thus jumps back onto the
plane n; = 0, and this process repeats.
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Figure 11: Ilustration of map M in terms of family of
two-dimensional maps My(t), 0 < b < B.

Unlike the tent map which has period 3 orbits, M
starts at a much higher periodicity, can be shown to
have any periodicity as well as aperiodic orbits using
standard arguments such as Sharkovskii’s Theorem [2].
The detailed study of the dynamics produced by this
map are under investigation, but its general nature in-
dicates that it generates behavior qualitatively similar
to that produced by the tent map. Maps that are qual-
itatively similar to M have also been presented in [21]
to show the chaotic behavior.

3 Experimental Results

In this section, we describe simulation and Internet
measurements to illustrate the complicated dynamics
of TCP. In simulations, we plot various TCP param-
eters, and in network measurements we plot the end-
to-end delays of fixed size messages.

3.1 TCP competing with UDP

Figure 2 shows the network topology used in ns-
2 simulations to perform our experiments. Source
nodes 0 and 1 generate TCP and UDP traffic, respec-
tively, that goes to a drop-tail router over 2.0 Mbps
links and then to a bottleneck link of 1.7 Mbps be-
fore reaching the destination. Source node 1 generates
UDP traffic at a constant bit rate (CBR) and serves as
the background traffic that the TCP connection must
adapt to. To simulate different levels of congestion, the
traffic-generation rate is varied from 0 to 1.5 Mbps in
steps of 0.5 Mbps. This set-up provides an easy way
to increase the traffic on the bottleneck link so that
different TCP behaviors can be observed.

3.2 Long Streams

The source node is attached to an FTP client that
acts as an infinite source of TCP traffic. The results
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Figure 12: Bursty TCP stream with 0.15 sec square
wave with UDP rate of 1.6 Mbps with starting point
delayed by 0.1 sec compared to 9.



with no UDP traffic are shown in Figure 3; as dis-
cussed before both w(t) and e(t) are periodic with the
attractor described by a simple curve. For other UDP
rates, both w(t) and e(t) did not show repeated pat-
terns during the observation period, and the attractor
became significantly more complicated. The composite
of attractors at all the UDP loads is shown in Figure
4. When the UDP rate is 0.5Mbps, the dynamics are
more complicated as shown in Figure 5. While the tra-
jectories remain bounded in the w(t) —e(t) plane, the
shapes of the attractors at various UDP rates appeared
quite varied and did not follow any particular evolu-
tionary pattern. At all UDP loads both w(t) and e(¢)
had significant periodic components but were not ac-
tually period — the digression from the periodic nature
increased as the UDP rate is increased. For example
the e(t) has less periodic component in Figure 8 for a
UDP rate of 1.5 Mbps compared to Figure 7 for a UDP
rate of 1.0 Mbps. We only showed some typical plots
in Figures 3-8 but the general nature of the w(t) and
e(t) remained more or less the same. Since the observa-
tion time is limited, it is quite possible that these plots
are small parts of periodic trajectories. But the radi-
cal difference in the attractor shape together with the
map M discussed in the last section provide a strong
indication that TCP can generates aperiodic orbits for
w(t) and e(t).

3.3 Short Bursty Streams

In applications involving large transfers, such as in
data archival and high-performance storage tasks, the
transfer times not particularly sensitive to the dynam-
ics at the finer time scales. But the effects of TCP
dynamics are more pronounced in transfers of small
messages such as control signals. To study such ef-
fects, we now consider simple on-off ftp source simulat-
ing the square-wave function for the message transfers.
Such short message are typical in applications involv-
ing the instrument control over wide-area networks; for
such applications the end-to-end dynamics at the finer
time scales are very critical, since jittery dynamics can
destabilize the control loops. The profiles of w(t) and
e(t) are significantly more complicated as shown in Fig-
ures 9-16. In Figures 13-16, we also show the Fourier
spectra of e(t) to illustrate the non-periodic nature.

A typical case is shown in Figure 9 where the dura-
tion of each ftp session is 0.15 sec with 0.15sec duration
between the consecutive sessions. The UDP CBR rate
is 1.6Mbps. The top plot shows w(t) which is aperi-
odic during the observation interval. The plot below
it shows e(t) which is also aperiodic but shows much
more variation compared to the similar plots in case
of long streams; the plot below it shows its magnitude
plot of the Fourier coefficients, which shows significant
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Figure 13: Bursty TCP stream with 0.16 sec square
wave with UDP rate of 1.65 Mbps with starting point
same as 12.

non-periodic parts. The bottom most plot shows the
attractor which is also more complicated than in the
long stream case.

To show the sensitivity of e(t) with respect to the
starting time, we advanced the start tome of the ftp
by 0.1 sec, which resulted in significant changes as re-
flected in the Fourier spectrum shown in Figure 12.
The w(t) and e(t) are also quite different and in partic-
ular they are not simply time shifted versions of those
in Figure 7. However, it is interesting to note that the
attractor is the same as before.

For each of Figures 13 - 16 the top plots show e(¢),
the middle plots show the Fourier coefficients and the
bottom plots show the attractor in w(t)—e(t) plane. To
show the sensitivity with respect to the UDP rate we
increased it to 1.65Mbps and the results are shown in
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Figure 13. Note that e(t) is still chaotic in appearance
although it is quite different from the previous case.
Also the attractor is quite different from the previous
case. This illustrates the sensitivity of the trajectories
of e(t) and w(t) to the background traffic.

Then we changed the ftp duration to 0.16s which is
slightly different from the previous case. Interesting
enough, e(t) became quite periodic as shown by the
Fourier spectrum as in Figure 14. Also the attractor
now has a very simple appearance. When the ftp dura-
tion is changed to 0.14s the behavior appeared close to
the quasi periodic as shown in the Fourier plot in Fig-
ure 15. Finally we changed the ftp duration to 0.13sec,
which resulted in apparently periodic trajectories with
a very simple attractor.

In summary, for this case we have seen evidence for
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Figure 15: Bursty TCP stream with 0.14 sec square
wave with UDP rate of 1.65 Mbps with starting point
same as 12.

all three components of the chaotic behavior. The tra-
jectories are periodic as well as aperiodic with broad
Fourier spectra. They showed extreme sensitivity to
various parameters and their attractor is complicated.
While these empirical results do not by themselves
establish that TCP exhibits chaotic dynamics, they
should be viewed in combination of the analytical re-
sults presented in the last section.

3.4 Wireline measurements

We collected Internet measurements between Oak
Ridge National Laboratory (ORNL) and University of
Oklahoma (OU) by sending streams each consisting of
messages of fixed size 10K bytes at the regular inter-
vals of 10 seconds. Each message is received at the
destination and sent back to the source. The round-
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Figure 16: Bursty TCP stream with 0.13 sec square
wave with UDP rate of 1.65 Mbps with starting point
same as 12.

trip time is computed at the source and divided by two
to estimate one way end-to-end delay for the message;
this is only an estimate since the forward and return
paths of a TCP stream could be different, and even in
each way different packets may travel different physi-
cal paths. Due to lack of access to the TCP internal
variables, we only consider the end-to-end delays of
the messages rather than the packet-level delays dis-
cussed in the last section. But these two quantities are
closely related: the end-to-end delay for the message is
the difference between the time last packet of the mes-
sage is received at the destination and the time first
packet left the source. Thus the dynamics of the one
will be reflected in the other. Each plot of Figure 17
corresponds to three streams each with 20 messages.
The individual streams are separated by an hour. The

20.0000

Figure 17: Wire-line network measurements.

top and bottom plots in Figure 17 are separated by a
day. Notice that there is a considerable variation in
the end-to-end delay even for the messages send only
a second apart. Such variation is present in measure-
ments collected within a day as well as those collected
on different days. These dynamic variations are very
important because they can play crucial role in the
stability of the control loops between the source and
destination.

There are some important differences in these mea-
surements and simulation results of last section. First,
the Internet paths from ORNL and OU consists of the
parts of ESnet and Abiline networks, each of which in
turn consists of a number of routers and perhaps more
than one bottleneck link. Also the competing traffic
is not entirely UDP. Nevertheless, the dynamic vari-
ations in the end-to-end delays are indicative of the
qualitative behavior of the dynamics.

3.5 Wireless End Subnetwork

We now describe the measurements collected from a
laptop connected to the Internet over a wireless local-
area network using the software used in the previous
section. The source node is located at the exhibit hall
of Supercomputing 2001 conference in Denver and the
destination node is at ORNL. Here, each stream con-
sisted of 25 messages each separated by a minute in
time. Such measurements are repeated hourly 13 times
during the same day and all results are shown in Fig-
ures 18 and 19. Here the source node connected to
the wireless network at the exhibit hall which had a
large variation in the background traffic throughout



the day. The time scales of variation are very sensi-
tive to the hour of the day, ranging from hundreds of
milliseconds to hundreds of seconds. In the top plot
of Figure 18 measurements of all 13 hourly streams
are shown. In each plot below the hourly measure-
ments that contained the highest delay are removed,
and same procedure is repeated for all plots of Figure
19. The three orders of magnitude difference in the
time-scales of various plots is mainly due to the com-
peting traffic, which was low in the morning and at
night but was much higher during the day. It is very
interesting to note that given time scale, the end-to-
end delays are very dynamic at that scale, and such
behavior persisted at all the time scales. Thus for con-
trol application in such scenarios, both the time-scales
as well as the dynamic variations in the end-to-end
message delays are very important. Simply knowing
the traffic levels (and hence the hourly time scales) is
not sufficient to predict the end-to-end delays, which
showed quite a variability at every time scale.

4 Conclusions

We presented analytical and experimental results
that indicate the chaotic behavior of TCP at certain
time scales. We presented a state-space description
of TCP using the window size and end-to-end packet
delays. By composing two almost linear but unstable
models, we presented a model for TCP dynamics. This
model shows that TCP generates bounded but highly
complicated dynamics when it interacts with routers
with small buffers. We discussed ways in which chaotic
trajectories can be generated by TCP, by identifying a
tent-like map embedded in the dynamics of TCP. But
we congsider this work to be a small step toward un-
derstanding the complicated nature of TCP dynamics
over wide area networks. While such dynamics do not
significantly impact large data transfer applications,
they could be very important in closed-loop control
applications implemented over wide-area networks.

There are several open questions in the area of un-
derstanding TCP dynamics. It would be interesting
to see the differences in the dynamics generated by
various versions of TCP. Our initial ns simulations of
Vegas and Reno versions indicate a behavior qualita-
tively similar to the results presented here with Tahoe
version, but the precise parameter values correspond-
ing to various behaviors are quite different. Also we
assumed here that w(t) can take and can be initialized
with arbitrary real numbers, and it would be interest-
ing to see the effects of finite precision implementation
on the TCP dynamics. Note however that a simple lin-
ear feedback system can exhibit chaotic behavior when
implemented with finite precision [22], and hence it is
non trivial to predict the effects of finite precision on

TCP dynamics. It would be particularly interesting
to see the relevance of such effects in ns-2 simulations,
which are finite precision implementations.

Another important issue for further investigation is
the practical implications of the chaotic behavior of
TCP on real network applications. It is clear that dy-
namics are most important for control applications. In
some cases, multiple path methods can be used to in-
crease the effective bandwidth [15] which can then be
traded-off with the jitter by using simple end-filtering.
While some chaotic dynamics can be accounted for us-
ing such methods, the area of providing stable control
loops over wide area networks has received very lit-
tle attention. It would be interesting to see if there
are methods that drive TCP dynamics away from the
chaotic regions or control it if chaos become inevitable.

In terms of analysis, a detailed and explicit analysis
of the proposed map M will provide more insights into
the TCP dynamics. Also, it would be interesting to see
if the TCP dynamics can be shown to be amenable to
standard methods [12] such as snapback repellers [18,
10], Shilnikov Theorem [19] or delayed feedback effects
[4, 3]. It would be of future interest to apply methods
such as computation of various Lyapunov exponents on
the time series [1] data of window sizes and end-to-end
delays, particularly for Internet measurements.
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Figure 18: Wireline network measurements.
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Figure 19: Wireline network measurements.



