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ABSTRACT 
 

Arrays of quantum dots (QD) produce bi-stable and multi-stable 
robust behavior, which can be harnessed for unconventional, yet powerful 
computing. In this paper, we propose a novel approach to signal pattern 
analysis using a two-dimensional array of QD, based on the formal analogy 
between the free energies of the QD array and a Hopfield neural network. 
Photon-assisted tunneling in the QD array enables realistic emulation of the 
plasticity of neural synapses. Simulation results illustrate the feasibility of 
the approach. 

 
 

INTRODUCTION 
Recent developments in nanoscale science and technology have opened exciting 

opportunities for revolutionary advances in nanoscale computing, communication, 
detection, and sensing. Fully exploiting this emerging potential requires a deep 
understanding of the complex dynamics and properties of small arrays of quantum 
structures, including quantum dots (QD), ultra small Josephson junctions, QD lasers, and 
others. Such arrays are known to produce robust bi-stable and multi-stable behavior, 
which can be harnessed for unconventional, yet powerful computing. The purpose of this 
paper is to address the issue of complex information processing by QD arrays. In 
particular, we are interested in demonstrating a capability for pattern classification using 
neuromorphic algorithms.  The reader is referred to a companion paper [1] in this volume 
for a report of experimental progress toward this goal. 
 
NEUROMORPHIC ALGORITHMS FOR COMPLEX INFORMATION PROCESSING 

QD nanoelectronic and molecular electronic devices represent a promising 
hardware technology that offers both conceptual opportunities and engineering 
challenges for complex information processing applications (for example, see Ref. [2-5]). 
One such application, namely pattern recognition, is of considerable interest to the 
development of modern intelligent systems and will be considered here. The proven 
ability of neuromorphic algorithms to deal with uncertain information and to interact with 
dynamic environments is providing a strong incentive to explore the feasibility of 
implementing pattern recognition algorithms on nanoscale electronic devices.  



Artificial neural networks are adaptive systems that process information by means 
of their response to discrete or continuous input [6]. Neural networks can provide 
practical solutions to a variety of artificial intelligence problems, including pattern 
recognition [7], autonomous knowledge acquisition from observations of correlated 
activities [8], real-time control of complex systems [9], and fast adaptive optimization 
[10].  At the heart of such advances lies the development of efficient computational 
methodologies for “learning” [11]. The development of neural learning algorithms has 
generally been based upon the minimization of an energy-like neuromorphic error 
function or functional [12].   

Roychowdhury and his collaborators were the first to propose the implementation 
of neural networks in terms of QD arrays [13]. In their Gedankenexperiment, a generic 
array of nanometer-sized metallic islands would be deposited on a resonant tunneling 
diode. The Roychowdhury team showed that the evolution of an initial charge 
distribution toward a stable final equilibrium distribution can be given a neuromorphic 
interpretation and that this property emerges purely as a result of the discreteness of the 
electronic charge [14]. There are some shortcomings in their proposal. The most notable 
is the assumption that all inter-island capacitance could be modified arbitrarily, but 
offered no mechanism to achieve this essential property. Even though their paradigm 
would allow some elementary form of combinatorial optimization, Roychowdhury’s 
proposal could not be used for neural learning needed in pattern recognition.  

FIGURE1. Two-dimensional QD 
array showing voltages as input 
channels and currents as outputs. 

There is a formal similarity between the dynamics of neural networks and that of 
QD arrays that the proposal from [13] readily identified. In the latter, the electrostatic 
free energy characterized by a charge distribution of individual excess electrons in a QD 
array can be lowered in terms of quantum tunneling events. For neural networks, on the 
other hand, Hopfield has shown that the stable states of the network are the local minima 
of a bounded Lyapunov function of the net’s output, parameterized by the synaptic 
interconnection weights.  A careful analysis, however, reveals that this formal similarity 
is not sufficient for implementing learning algorithms for pattern recognition. By 
comparing the leading terms of the free energy (see 
Eq. (2) below), i.e., 11 TQ C−

2  and the Lyapunov 
function in a Hopfield network, i.e., 

Q
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we see that the inverse of the augmented capacitance 
matrix would have to play the role of the synaptic 
matrix. However, the capacitance is fixed, and 
cannot be modified after device fabrication. An 
alternative approach for controlling the dynamics of 
the system has to be found.  In principle, one could 
manipulate the free energy of the array via 
capacitive gating of each QD. However, for an array 
of quantum dots 1-to-2 nm in size, which is 
necessary for room temperature operation, we are 
not aware of technology capable of implementing 
such gating on an individual basis.  
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Studies of the dynamics of arrays of QD in the presence of time-dependent 
excitations (e.g., RF signal [15,16]) reveal a rich structure of dynamical behaviors that 
offers a tremendous potential for performing the flexibility we need. In particular, a team 
led by Oosterkamp has recently made available an extensive survey of experiments and 
methods for photon-assisted tunneling in QD [17]. In the absence of a time-dependent 
field, current flows through a quantum dot via tunneling when an unoccupied internal 
energy state is aligned to the Fermi energy of the leads. However, as pointed out by 
Oosterkamp et al., following seminal work by Likharev et al., if a time-varying AC 
voltage (0 cos 2A tπω  is applied, inelastic tunnel events are induced when electrons 



exchange photons of energy ν with the oscillating field. Tien and Gordon first described 
theoretically this phenomenon of multiphoton-assisted tunneling [18] (see Eq. (8) below).  
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We consider the transport voltage V as the input variable and the current I as the 
output function in designing the neuromorphic computation. For a two-dimensional QD 
array with M input and M output nodes, we can readily generalize the description of 
single-electron tunneling, given below, to consider M input voltages Vm and M output 
currents   Im(Vm, A0, ν)  , m = 1, 2, … ,M   (see Fig. 1) .   This vector   function, 

MI   ,  is  
controllable  through the parameters of the external, alternating field, i.e., the field 
amplitude A0 and frequency ν, by minimizing the error function E, defined over a 
numberof  L training patterns as  the squared difference between the l-th observed 
current, l

MI  , 

and the target currents,  *l
MI  ,  
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For convenience, vector dimensions are explicitly indicated as subscripts. If additional 
controls are necessary, then a polychromatic AC field may be considered for the global 
control, rather than a monochromatic field.  In the following section, we demonstrate the 
modulation via interaction with an external, oscillatory field of the electric current as a 
function of the applied voltage through a QD array. This is the essential capability 
necessary for our approach to neuromorphic pattern-recognition in QD arrays. 
 

SINGLE-ELECTRON TUNNELING IN A 1-D QUANTUM-DOT ARRAY 
Consider a one-dimensional array of N tunnel junctions constructed from metallic 

source and drain electrodes weakly coupled to a linear array of N - 1 metal clusters. The 
“orthodox theory” of single-electron tunneling [2] is very successful in describing the 
charge transport through arrays of low-conductance (high resistance) tunnel junctions 
under small, but finite, bias voltage.  The vector n  defines the state of our system, 

( )1 1i N , where  is the number of excess electrons accommodated by the 
quantum dot. The Gibbs free energy 

, , , ,n n n n −≡
thi ( , )E n V  describing the electrostatic energy of the 

array of quantum dots and its interaction with the external voltage is 

( ) 11,
2

T
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where ij ji  is the mutual capacitance between conductors and , and iC C= i j φ  is the 
electrical potential of cluster i  measured with respect to the substrate. The source and 
drain electrodes are enumerated as i 0= and i N= , respectively. The source potential is 

0 s / 2V Vφ = = , and the drain potential is N d / 2VVφ = = − . V is the transport voltage across 
the array.  In writing Eq. (2) a matrix notation is used, i.e., Q Cφ= , where generalized 
capacitance matrix elements and an augmented charged vector are defined.  

In describing the electron transport through the array, we adopt the standard 
approximations of the “orthodox theory” approach, i.e., we neglect the effects of co-
tunneling, and consider only single-electron tunneling between nearest neighbors in the 
array. That is, the final state of the tunneling differs from the initial state  by the 
transfer of a single electron though the  junction, e.g., k , where 

1k k k−  and k is a unit vector for the quantum dot. The ± sign gives the 
direction of tunneling through the junction. If the transition rates are sufficiently small, 
one can perform a calculation using Fermi’s Golden Rule to obtain [2] 
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where ( ) ( ) ( ), ,E n V E n u V E n V±∆ ≡ ± ∆ −
R
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,k k is the change in the free energy of the system due to 
tunneling, k  is the effective resistance of the tunnel junction, e is the fundamental 
unit of charge, and the thermal energy is B . The master equation describing the time 
evolution of the probability of finding the circuit in the state 
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Practical approaches to solving the master equation are described in Refs. [3-5], and 
software to solve these equations is available in the public domain [19].  Given the 
solution of Eq. (4), the average tunneling current is given by computing the net flow 
through any junction k  in the array: 

   (5) 
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where  is the time average of ( )P n ( ),P n t .  

Multiphoton-assisted tunneling. Tien and Gordon first described theoretically the 
phenomenon of multiphoton-assisted tunneling (PAT) [18] for electron transport in the 
presence of a time-varying AC voltage ( )0 cos 2A tπω . The tunneling rate Γ through each 
barrier in the presence of an electromagnetic excitation in terms of the rates without the 
external AC field, 
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where Jα  denotes the Bessel function of the first kind and α denoting the number of 
photons exchanged. The master equation is generalized to account for PAT processes by 
substituting the rates given by Eq. (6) into Eq. (4). Then, the current through the 1-D QD 
array becomes a function of the amplitude A0 and frequency ν of the AC field, in addition 
to the transport voltage V, 

( ) ( ) ( ) ( )0 0, , , , , , , ,k k
n

I V A e P n n V A n V A0ν ν+ −= Γ −Γ∑ ν  .  
  (7) 

We have numerically solved Eq. (7) applying well-known Monte-Carlo 
approaches [3,4,5] by modifying the public domain software [19] to include the PAT 
rates from Eq.(6).  Results shown in Fig. (2), demonstrate that the current through a 1D 
QD array with 3 QDs can be effectively modulated by the applied frequency of external 
oscillatory field. These simulations confirm that PAT can be used to control the charge 
transport through QD arrays in a manner that preserve the desired non-linear current-
voltage relations (e.g., Coulomb blockade, Coulomb staircase). 

High-conductance tunnel junctions. From a practical point of view, large arrays 
have advantages, e.g., good electrical isolation of the inner QD from the environment.  At 
the same time, increasing the number of junctions in the array, increases its total 
resistance. This makes it attractive to consider high-conductance tunnel junctions, in 
contrast to the low-conductance junctions considered in the previous section.  Theoretical 
work on this topic has demonstrated that under certain conditions, the non-linear current-
voltage behavior we desire (e.g., Coulomb-blockade, Coulomb staircase) survives into 
the high-conductance regime [20].  
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FIGURE 2. Current-voltage characteristics through a 1-D QD array 
with the current modulated by multiphoton-assisted tunneling. 

Consider a one-dimensional array of N quantum dots with high-conductance 
tunnel junctions. Their dynamics is described by the Langevin equations [20]: 
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Here ( )j tϕ  is the junction phase, defined such that 
(9) 

( )
2 j jt V
e
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is the voltage drop across junction j. The external voltage is denoted by V . With each 
junction, there is an associated shot noise 

x
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where j  and j  are correlated Gaussian random variables with specific properties. a b sR  
and sξ are, respectively, the resistance of the electromagnetic environment and a noise-
like local perturbation to the current, . q
The dimensionless equations for the array dynamics are obtained by combining Eqs. (8) 
and (9), and by eliminating the circuit current. Moreover, it is common to express the 
phases in scaled time units, scaled by a frequency parameterω . We obtain 
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where V  is a normalization voltage, and0  
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In deriving Eq.(11),  we have assumed that sξ  is zero, and that all resistances are equal to 
R, and all capacitances are equal to C. The procedure used to calculate the averaged 
current <  in terms of the dimensionless external voltage is as follows. Let i > xv
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FIGURE 3. Current-voltage relations computed by the Langevin 
Equation approach demonstrating the Coulomb-blockade and 
Coulomb-staircase phenomena for a 1-D array of low-conductance 
tunnel junctions. 

 
SUMMARY AND CONCLUSIONS 

 
 In this paper, we have explored an opportunity for implementing neuromorphic 
algorithms for pattern recognition in QD arrays of sufficiently close so that transport 
through the array occurs via single-electron tunneling.  Previous work on this topic is 
discussed, based on the formal analogy between the Lyapunov function of a neural 



network and the electrostatic free energy of a quantum-dot array.  While attractive, it is 
practically difficult to leverage this analogy for pattern recognition because of one’s 
inability to modify the capacitance of the QD array after fabrication of the device.  One 
possibility around this obstacle is to interface a gate electrode to each (or to many) QDs 
in the array.  This also has tremendous technical difficulties for QD of a size appropriate 
for room-temperature operation (~ 1 nm).  An alternative approach is to modulate the 
current-voltage relations of the QD array by interaction with an oscillatory applied field.  
We have presented simulation results that demonstrate that various parameters of the 
field (i.e., frequencies and amplitudes within realistic ranges) may be used to modulate 
the current, and therefore utilized as control parameters for the neuromorphic pattern 
recognition algorithms.  In this manner, rather than insisting on using external controls 
local in space (which are not practical), we choose external controls that are localized in 
a reciprocal space (e.g., frequency space). 
 For simplicity in this paper, we have neglected this discreteness in the density of 
electronic states in the cluster resulting from their small size. However, as discussed in 
our companion paper [1], we are interested in nanometer-sized metal clusters in which 
the Coulomb blockade of conductance may be observed at room temperature.  In such 
nanocluster systems, the energy gap between the highest-occupied and lowest-
unoccupied orbitals can be as large as 0.5 eV.  For a quantitative description of such 
systems, one should not neglect the discreteness of the density of electronic states, as 
these features will introduce new transport channels producing new features into the 
current-voltage relationship.  The qualitative result presented here of the modulation of 
the current by photon-assisted tunneling is expected to be unaffected by the 
simplifications employed here. 
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