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Research Outline

® Develop techniqgues to control frictional properties
of the nano-system during sliding

 Test algorithms with MD simulations

« Experimental implementation of friction control
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Novelty of the Proposed Research

Efforts to make different lubricants are widespread around the
world. In this Proposal, we aim to make a difference. While
lubrication at the bulk has been manipulated by conventional
means, the point of this proposal is very different.

We propose, for the first time, practical methods to manipulate
friction at the nanoscale, which is impossible to manipulate by
traditional methods. We will use (a) non-Lipschitzian dynamics
and terminal attractor formalism; and (b) “collective structures”
rather than brute-force manipulation.

We bring to this research innovative techniques that involve
expertise of nonlinear dynamics. These techniques are new
and revolutionary to the field of material research.
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Motivation

e Velocity (friction) control during diding
* Ability to reach desired diding velocity

» Achievefast transient times

* The applied control islimited in strength

* Requiresonly limited accessibility
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Robustness of Friction Mechanisms

Friction is ruled by robust dynamics

good qualitative agreement between variety of
models and types of interaction potentials used

for a model

— choice of parameters may be even more
Important than the choice of a model !!!

— Initial conditions !
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Modeling
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Natural Motion

e Free Siding: v =f/y
* No dliding (fixed point): v=0

« Low velocity (stick - dlip) motion: v =
0O(0.1)

e Chaotic motion: O<v<fly
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“Falling Domino” Dynamics
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Values of the Sliding Velocities

Only particular values of velocities
of the “uncontrolled motion” can be observed:

v = f/y - free diding
V= Vgaoic = 1.8 (Just asingle value
for given parameter set)

2 —cos " f
v=kv, here v,= T )2 (k =k )"?
MmN y T

N isthe number of particles
and k isan integer
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Friction Control During Sliding
 Feedback techniques - external perturbations
Benefits:
 Ability to continuously vary the average sliding velocity

e Fast transient times

» Non-feedback techniques - periodic perturbations

Control =170 (Viyge -v_)’

N=1if Vigge < Vom Mechanisms:
-1 Vigrge > Vom o Stabilizes already existing structures
e Creates new structures
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Feedback Control Algorithm

Use terminal attractor formalism (applied in neural nets)
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Benefits:

» Ability todrivefriction to adesired value

 Fast transient times

o Accessibility - requiresonly the measurement
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Performance of the Control Algorithm
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Friction Control by Surface Vibrations

Velocity of the center of mass as the function
of the surface vibration frequency.

velocity of the center of mass
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Theoretical Demonstration of the
Effect of Surface Vibrations
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e Velocity is controlled by the amplitude of surface vibrations.
e Non-feedback control
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Locking of the Temporal and Spatial
Dynamics (Modes)

Small size and confinement
Each mode is characterized by

The outcome = Propagation modes different frictional behavior
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Sliding on Disordered Substrate

Friction coefficient can be significantly reduced
(by orders of magnitude) when sliding on irregular surfaces
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Disorder - Enhanced Synchronization
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(a) the identical array; ( b ) 20% of disorder;
(c) 25 % of disorder; (d ) 30 % of disorder
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Sliding Is Faster on
Disordered Surfaces
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In array as a function of time.

The inset shows the average
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Sliding Is Faster for a Better
Synchronized Array

¥ s Time series of the fluctuations
') from the center of mass f(o) for
different amounts of disorder.
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The inset shows the average
fluctuations from the center of
mass as the function of the
velocity of the center of mass.
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Summary

We proposed control algorithm that enables us to control

the average velocity (friction coefficient) of the chain during
sliding.

Benefits:

Ability to continuoudly vary the average sliding velocity
Ability to reach desired dliding velocity

Fast transient times

The applied control islimited in strength

Requires only limited accessibility

Mechanisms:

o Stabilizes already existing spatial structures
 Createsnew spatiotemporal structures
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