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Research OutlineResearch OutlineResearch OutlineResearch Outline

•  Develop techniques to control frictional properties
of the nano-system during  slidingduring  slidingduring  slidingduring  sliding
 
•  Test algorithms with MD simulations

•  Experimental implementation of friction control
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Novelty of the Proposed ResearchNovelty of the Proposed ResearchNovelty of the Proposed ResearchNovelty of the Proposed Research

Efforts to make different lubricants are widespread around the 
world.  In this Proposal, we aim to make a difference.  While 
lubrication at the bulk has been manipulated by conventional 
means, the point of this proposal is very different.   
We propose, for the first time, practical methods to manipulate 
friction at the nanoscale, which is impossible to manipulate by 
traditional methods. We will use (a) non-Lipschitzian dynamics 
and terminal attractor formalism; and (b) “collective structures” 
rather than brute-force manipulation. 
 We bring to this research innovative techniques that involve
expertise of nonlinear dynamics. These techniques are new
and revolutionary to the field of material research.
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MotivationMotivationMotivationMotivation

• Velocity (friction) control during sliding

• Ability to reach desired sliding velocity

• Achieve fast transient times

• The applied control is limited in strength

• Requires only limited accessibility 
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   Robustness of Friction MechanismsRobustness of Friction MechanismsRobustness of Friction MechanismsRobustness of Friction Mechanisms

 Friction is ruled by robust dynamics

 good qualitative agreement between variety of
models and types of interaction potentials used
for a model

– choice of parameters may be even more
important than the choice of a model !!!

– Initial conditions !
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ModelingModelingModelingModeling

/ / ( )
j j j j j j
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xj is the position of the particle j
m is the mass of the sliding particle
M is the mass of the upper plate
γγγγ  is the dissipation coefficient
U is the interaction potential
V is the surface potential
f  is the external driving force
ηηηη is the thermal noise (temperature
effect)

Friction is ruled by robust dynamics
The use of good qualitative
agreement between a variety of
models and types of interaction
potentials for a model choice of
parameters may be even more
important than the choice of a
model.
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Frenkel-Kontorova model

Driven Two-Wave Potential Model

F. Family, H. G. E. Hentschel, and Y. Braiman, J. Chem. Phys. B 104, 3984 (2000);
H. G. E. Hentschel, F. Family, and Y. Braiman, Phys. Rev. Lett. 83, 104 (1999).



Natural MotionNatural MotionNatural MotionNatural Motion

• Free Sliding: v ≈≈≈≈ f/γγγγ

• No sliding (fixed point): v = 0

• Low velocity (stick - slip) motion: v =
O(0.1)

• Chaotic motion: 0 < v < f/γγγγ
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“Falling Domino” Dynamics“Falling Domino” Dynamics“Falling Domino” Dynamics“Falling Domino” Dynamics
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Values of the Sliding VelocitiesValues of the Sliding VelocitiesValues of the Sliding VelocitiesValues of the Sliding Velocities

Only particular values of velocities
of the “uncontrolled motion” can be observed:

v = f/γ  - free sliding

v = vchaotic = 1.8 (just a single value
                            for given parameter set)

v = kv0   here
1

1/ 2 1/ 2
0

2 cos( ) ( )c
fv

mN
π π κ κ
γ π

−−= −

Y. Braiman, F. Family, and H. G. E. Hentschel,
Phys. Rev. E 53, R3005 (1996)

N is the number of particles 
and k is an integer
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Friction Control During SlidingFriction Control During SlidingFriction Control During SlidingFriction Control During Sliding

• Feedback techniques - external perturbations

Benefits: 
• Ability to continuously vary the average sliding velocity
• Fast transient times

• Non-feedback techniques - periodic perturbations

arg( )t et cmControl v v βηα= −

η= 1 if vtarget < vcm
    -1 if vtarget > vcm

J. Barhen, S. Gulati, and M. Zak, IEEE Computer June 1989, pp 67-76

Mechanisms:
• Stabilizes already existing structures
• Creates new structures
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Feedback Control AlgorithmFeedback Control AlgorithmFeedback Control AlgorithmFeedback Control Algorithm
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Benefits:
• Ability to drive friction to a desired value
• Fast transient times
• Accessibility  - requires only the measurement
  of average quantities

Use terminal attractor formalism (applied in neural nets)

Y.Braiman, J. Barhen, and V. Protopopescu, “Control of Friction 
at the Nanoscale”, Submitted to Phys. Rev. Lett. (2002).
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Performance of the Control AlgorithmPerformance of the Control AlgorithmPerformance of the Control AlgorithmPerformance of the Control Algorithm
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Strength of the ControlStrength of the ControlStrength of the ControlStrength of the Control
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Friction Control by Surface VibrationsFriction Control by Surface VibrationsFriction Control by Surface VibrationsFriction Control by Surface Vibrations
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Velocity of the center of mass as the function
 of the surface vibration frequency.
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M. Heuberger, C. Drummond, and J. Israelachvili, J. Chem. Phys. B 102, 5038 (1998);
J. Gao, W. D. Luedtke, and u. Landman, J. Phys. Chem. B 102, 5033 (1998);
M. G. Rozman, M. Urbakh, and J. Klafter, Phys. Rev. E 57, 7340 (1998);
F.-J. Elmer, Phys. Rev. E 57, R4903 (1998). 
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Theoretical Demonstration of theTheoretical Demonstration of theTheoretical Demonstration of theTheoretical Demonstration of the
Effect of Surface VibrationsEffect of Surface VibrationsEffect of Surface VibrationsEffect of Surface Vibrations
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Amplitude of periodic surface vibration

• Velocity is controlled by the amplitude of surface vibrations.
• Non-feedback control

Y. Braiman, J. Barhen, and V. Protopopescu, “Friction Control 
by Surface Vibrations” (in preparation). 
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Transition to Sliding BehaviorTransition to Sliding BehaviorTransition to Sliding BehaviorTransition to Sliding Behavior
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Locking of the Temporal and SpatialLocking of the Temporal and SpatialLocking of the Temporal and SpatialLocking of the Temporal and Spatial
DDDDynamics (Modes)ynamics (Modes)ynamics (Modes)ynamics (Modes)

Small size and confinement
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The outcome  ����  Propagation modes
Each mode is characterized by

different frictional behavior
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H. G. E. Hentschel, F. Family, and Y. Braiman, PRL 83, 104 (1999).
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Sliding on Disordered SubstrateSliding on Disordered SubstrateSliding on Disordered SubstrateSliding on Disordered Substrate

Friction coefficient can be significantly reduced
 (by orders of magnitude) when sliding on irregular surfaces
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Y. Braiman, F. Family, H. G. E. Hentschel, 
C. Mak, and J. Krim, PRE 59, R4737 (1999)
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Disorder - Enhanced SynchronizationDisorder - Enhanced SynchronizationDisorder - Enhanced SynchronizationDisorder - Enhanced Synchronization

Time series of positions of all the particles in N=25 particle array for:
( a ) the identical array; ( b ) 20% of disorder;
( c ) 25 % of disorder; ( d ) 30 % of disorder

(a) (b)

(c) (d)

Vcm=0.05Vcm=0.05

Vcm=0.146
Vcm=0.258
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The position of a particle #12
 in array as a function of time.

The bottom curve corresponds to
the identical array.

The middle curve corresponds to
to the arrays with 20% of

disorder,
The top curve corresponds to the

array with 30% of disorder.

The inset shows the average
velocity of the center of mass as

a function of the amount of
disorder

Sliding is Faster onSliding is Faster onSliding is Faster onSliding is Faster on
Disordered SurfacesDisordered SurfacesDisordered SurfacesDisordered Surfaces

Y. Braiman, F. Family, H. G. E. Hentschel, 
C. Mak, and J. Krim, PRE 59, R4737 (1999)
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Time series of the fluctuations
from the center of mass f(σ) for
different amounts of disorder.

The left-hand part of the plot
corresponds to the identical

array.
 The middle part corresponds to

σ=15%.
The right-hand part corresponds

to σ=30%.
The inset shows the average
fluctuations from the center of

mass as the function of the
velocity of the center of mass.

Sliding is Faster for a BetterSliding is Faster for a BetterSliding is Faster for a BetterSliding is Faster for a Better
Synchronized Synchronized Synchronized Synchronized ArrayArrayArrayArray

Y. Braiman, F. Family, H. G. E. Hentschel, 
C. Mak, and J. Krim, PRE 59, R4737 (1999)
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SummarySummarySummarySummary

We proposed control algorithm that enables us to control
the average velocity (friction coefficient) of the chain during

sliding.

Benefits:
• Ability to continuously vary the average sliding velocity
• Ability to reach desired sliding velocity
• Fast transient times
• The applied control is limited in strength
•  Requires only limited accessibility
Mechanisms:
• Stabilizes already existing spatial structures
•  Creates new spatiotemporal structures
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