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Abstract

As-welded ferrite content in stainless steels has a strong
influence on weld properties.  In addition, it can be used as an
indicator of the solidification mode during welding.  In the last 60
years, constitution diagrams have been used to predict ferrite
content as a function of weld composition.  Over the years these
constitution diagrams have been improved but the basic approach
used in the diagrams has not changed.  Ferrite level is predicted
as a function of chromium and nickel equivalent factors, which
are determined by taking a weighted sum of specific alloying
additions.  These diagrams have been found to be very useful, but
they are subject to important limitations.  More recently, a new
approach using artificial neural networks for predicting ferrite
content in welds has been proposed.  This approach has the
advantage that complex interactions among alloying additions can
easily be taken into account.  This paper describes two such
models that have been developed.  The first predicts Ferrite
Number (FN) as a function of composition only.  This model is far
more accurate than constitution diagrams in predicting FN over
a wide composition range.  A second neural network model has
been developed more recently.  This model quantitatively
considers the influence of cooling rate and welding conditions on
FN for the first time, an effect that is particularly important for
laser welding, high speed welding, and welding of duplex
stainless steels.  The paper concludes with remarks on future
directions for improvement in predictive models.

Introduction

Stainless steel welds characteristically consist of two-phase
austenite plus ferrite microstructures.  Ferrite levels may vary
from a few percent in austenitic stainless steel welds to more than
50% in duplex stainless steel welds.  The ability to predict the
ferrite content in these welds is essential for many reasons.  To a
large extent, the final ferrite content determines a weldment’s
properties such as strength, toughness, corrosion resistance, and
long-term phase stability.  In addition, ferrite content is a useful

indicator of the mode of solidification, which strongly influences
the hot-cracking propensity during welding.  Over the years,
various models have evolved to try to accurately predict the ferrite
content in stainless steel welds*.  Constitution diagrams, in which
the overall alloy composition is converted into two factors, a
chromium equivalent (Creq) and a nickel equivalent (Nieq), have
been developed to predict FN in welds.  One of the earliest
constitution diagrams was that introduced by Schaeffler1.  Many
modified diagrams have been proposed since then2-7, with the
WRC-1992 diagram7 being the most recent and most accurate.
The various versions of constitution diagrams differ primarily in
the coefficients that are used to convert the alloy composition into
the Creq and Nieq; an extensive review is given in reference 5.

In most commonly used constitution diagrams, the weighted
coefficients are constant, and this means that a given alloy
addition’s influence is the same regardless of that element’s
concentration or the concentration of any other alloying additions.
In those cases where non-constant coefficients were proposed, the
applicability of the diagram is limited to a restricted composition
range.  Clearly, constant coefficients cannot represent real
behavior very well.  For example, the effect of carbon should be
very different depending on whether carbide forming elements are
present or not.

This limitation has been removed with the development of
predictive models based on artificial neural network analyses8-11.
Artificial neural networks are ideally suited for predicting ferrite
content because they offer improved flexibility, robustness, and
accuracy as a consequence of their use of non-linear regression
methods.  In this paper, two recently developed neural network
models will be described.  In the first, the predicted FN is based
on the alloy composition, taking into account 13 different alloying
additions.  This model is significantly more accurate than the
most recent constitution diagram.  The second neural network

*Strictly speaking, ferrite content refers to a volume % ferrite

while FN is an indicator of ferrite level but is not equal to the
volume %.  In this paper, ferrite content and FN will be used
interchangeably to specify ferrite level.
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Figure 1: Schematic diagram of a neural network showing the
three layers and the connections between nodes.  The lines
connecting nodes are shown with different weights to indicate the
variation in weight factors between nodes.

model considers cooling rate as well as composition as inputs to
the model.  It is well documented that cooling rate can have a
significant impact on the final ferrite content12-19.  Cooling rate
can influence the ferrite level in two ways: (a) it can change the
mode of solidification from primary ferrite formation at low
cooling rates to primary austenite formation at high cooling rates,
and (b) it can suppress the solid-state transformation of ferrite to
austenite after solidification, with the extent of suppression
increasing with increasing cooling rate.  The effect of cooling rate
was considered qualitatively by David et al14 but the new neural
network model accounts for cooling rate effects quantitatively.

Neural Networks - General

Neural networks are sophisticated non-linear regression
routines that, when properly “trained”, allow for the identification
of complex relationships between a series of inputs and one or
more outputs.  Networks consist of three layers: input, hidden, and
output layers.  Each layer contains nodes and the nodes from
different layers are connected, as shown schematically in Fig. 1.
The nodes correspond to specific inputs and outputs in the first
and last layers, respectively.  In the case of the FN neural
networks, the input layer nodes are elemental concentrations (and
cooling rate for the cooling-rate-inclusive network) and the single
output layer node is the Ferrite Number. The value at one node is
determined by a weighted sum of the nodes in the preceding layer.
Training involves a repetitive process in which inputs are used to
calculate the outputs, and these outputs are compared with the
experimental output.  Corrections to the weight factors that
connect nodes are made so as to minimize the error between the
calculated and actual output.  The reader is referred to the
literature for further details on neural networks in general20-21, and
the FN neural networks in particular8,11.

Data Generation

As described above, the development of a neural network
involves training of the network with a training dataset that
includes inputs (composition and cooling rate) and the associated
outputs (FN).  The accuracy and applicability of a neural network

is determined to a large extent by the training dataset that is
available - the larger the dataset, and the greater the range of
inputs that it covers, the better the final network that is produced.
For the composition-only neural network, the same data that were
used to produce the WRC-1992 constitution diagram were used to
generate the neural network model.  This dataset was a
compilation of data from several sources8.  Thirteen elements were
considered in the network: Fe, Cr, Ni, C, N, Mo, Mn, Si, Ti, Cu,
V, Nb, and Co.  In some cases, the concentrations of all of these
elements were not available and how this deficiency was
addressed is described in reference 8.

For the cooling-rate-inclusive neural network, supplemental
data from the literature were added to the WRC-dataset.  In
addition, new data were generated on a variety of austenitic and
duplex stainless steel laser and high-speed arc welds.  There were
several problems that had to be addressed in generating the
dataset for the cooling-rate-inclusive network.  These included
determining the cooling rate as a function of weld conditions,
assigning a cooling rate to the extensive WRC-1992 data, and
converting volume % ferrite measurements to FN.  These issues
and their resolution are described in detail elsewhere11.

Composition-Only Neural Network Model

The composition-only neural network that is described here
has been documented in detail elsewhere8-9 and has been named
FNN-1999.  Recently, another composition-only neural network
has been developed10, using the same WRC-1992 dataset.  Both
models are significantly more accurate than the WRC-1992
constitution diagram.  In this paper, results from the FNN-1999
model will be considered.

A comparison of the WRC-1992 and FNN-1999 models is
shown in Figs. 2a and 2b, where the calculated FN are plotted
against the measured FN.  It is clear that the degree of scatter is
significantly reduced with the FNN-1999 model.  Quantitatively,
the root mean square (RMS) errors for the two models are 5.8 and
3.5, respectively, representing a 40% improvement for the FNN-
1999 model.  The plots in Fig. 2 represent the degree to which the
models can fit the data, and therefore they do not indicate the
predictive accuracy of the two models.  The predictability was
assessed by comparing the predicted values with experimental
values on another dataset that was not used in the model
development9.  For this comparison, the FNN-1999 neural
network model also showed a significant improvement over the
WRC-1992 model, with RMS errors of 2.3 and 2.6, respectively,
corresponding to a 12% improvement.

Perhaps the most significant advantage of the FNN-1999
model is that it allows for the effect of various elemental additions
to change with overall alloy composition.  Such variations in the
influence of elemental additions were indicated by experimental
measurements.  For example, the model predicted that the effect
of Si in an austenitic stainless steel is to increase the ferrite level
at low Si concentrations but to decrease the FN slightly at higher
Si contents9.  As another example, it was predicted that the effect
of V is reversed when considering an austenitic versus a duplex
stainless steel.  In the former, V decreases the FN slightly while
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Figure 2: Plots of predicted FN versus measured FN for the WRC-
1992 dataset.  Predictions are made using the three different
models: (a) WRC-1992, (b) FNN-1999, and (c) ORFN©.

in the latter, V increases FN significantly9.  The same ability to
identify elemental effects that vary with overall alloy composition
was found for the other neural network model as well10.  Thus, the
neural network models are more accurate than the traditional
constitution diagram and furthermore, they allow for greater
flexibility when identifying the effects of alloying elements on FN.
 

Cooling-Rate-Inclusive Neural Network Model

As noted earlier, it has been well documented that cooling
rate can have a strong influence on the as-welded FN.  A new
neural network model (ORFN©) has been developed recently that
takes the cooling rate into account by adding a 14th input node
corresponding to cooling rate11.  The additional cooling rate
variable is calculated using a simple analysis11 and may not be an
accurate representation of the actual cooling rate.  However, the
analysis does not require the accurate calculation of the cooling
rate11.  Instead the requirement is that it accurately represents
relative cooling rates for different weld conditions and this is
expected to be the case.

The calculated FN versus measured FN using the ORFN©

model is shown in Fig. 2c for the WRC dataset.  Examination of
Figs. 2a, 2b, and 2c shows that the ORFN© model is comparable
to the FNN-1999 model and is significantly more accurate than
the WRC-1992 model.  The RMS error for the ORFN© model is
3.9, or roughly the same as that for the FNN-1999 model.  When
examining the predictability of the new ORFN© model on an
independent dataset, the RMS error  for ORFN© is 1.8, or 22%
better than FNN-1999 and 21% better than WRC-1992.

The real advantage of the new, cooling-rate-inclusive ferrite
prediction model is demonstrated when one examines data that
include welds made at high speeds or with high power density
processes (laser welds), where high cooling rates prevail.  The
predicted versus measured FN for the larger dataset that included
laser weld data and high speed arc weld data is shown in Figs. 3a,
3b, and 3c, for the WRC-1992, FNN-1999, and ORFN© models,
respectively.  It is readily apparent that the two former models
show a large degree of scatter compared to the latter model.
Quantitatively, the RMS errors for the three models are 9.9, 11.0,
and 4.7, respectively, corresponding to an improvement for the
ORFN© model of over 50%!  In Figs. 3a and 3b, a series of points
are encircled.  These data represent one example where FN
measurements were made on welds of the same alloy but welded
at different speeds and powers, and therefore different cooling
rates.  The WRC-1992 and FNN-1999 models predict the same
FN value for all weld conditions since they do not take cooling
rate into account.  Thus, the agreement between experimental
measurement and prediction is poor.  This limitation is removed
in the ORFN© model, resulting in a significant improvement in
the accuracy of the predictions.

A few examples of predictions using the ORFN© model will
now be considered.  In Fig. 4, the calculated FN is plotted as a
function of the cooling rate (log scale) for a typical 308 stainless
steel alloy composition.  The predictions show a gradual increase
in FN with cooling rate that is a consequence of the increasing
degree to which the ferrite-to-austenite solid state transformation
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Figure 3: Plots of predicted FN versus measured FN for the
expanded dataset that includes high-speed welds, laser welds, and
additional duplex stainless steel welds.  The predictions are made
using the three different models: (a) WRC-1992, (b) FNN-1999,
and (c) ORFN©.

Figure 4: Plot of predicted FN versus log cooling rate for a type
308 austenitic stainless steel (Fe-20.15Cr-10.68Ni-0.059C-
0.026N-1.92Mn-0.78Si-0.38Ti) using the ORFN© model.

is suppressed as cooling rate increases.  An increase in FN from
~15 to ~27 is predicted.  Beyond a calculated cooling rate of
~104 °C/s, the FN decreases and this reflects the fact that the
solidification mode changes from primary ferrite to primary
austenite formation.  Eventually, at calculated cooling rates
greater than ~3x106 °C/s, the predicted FN is 0, indicating
complete austenite solidification with no ferrite formation.  The
predicted variation of FN with cooling rate agrees with what is
expected based on an understanding of the solidification and
solid-state transformation behavior.  The trend also agreed with
experimental data11. It should be kept in mind that these results
apply to the particular composition used for the alloy and they will
vary as the alloy composition changes.

A second example is shown in Fig. 5, where the predicted
FN is plotted against peak power for a pulsed laser weld at
constant weld speed.  The alloy composition is the same 308
austenitic stainless steel composition that was used in Fig. 4.  In
this example, decreasing weld power corresponds to an increasing
cooling rate.  Once again, FN is predicted to increase with
increasing cooling rate (decreasing laser power) to a maximum of
~27 and then FN is predicted to decrease, eventually reaching 0.
In Fig. 5, the FN at the maximum power considered is ~21, which
is larger than the FN at low cooling rates in Fig. 4, indicating that
even at this high laser power, a moderately high cooling rate is
expected and a higher FN than that found at low cooling rates is
predicted.

A final example is shown in Fig. 6, where the predicted FN
is plotted versus sample thickness for a GTA weld on a type 312
stainless steel alloy.  For duplex steels, the FN will increase
monotonically with increasing cooling rate as the solid state
transformation of ferrite to austenite is increasingly suppressed.
For these alloys, the switch in solidification mode at high cooling
rates, as found in austenitic stainless steels, will not take place.
The model predicts that the as-welded FN will increases gradually
from ~90 to ~110, corresponding to a nearly fully ferritic
microstructure.  The slight “hump” in the predicted FN versus
thickness is an artefact due to the transition from 3D to 2D
cooling conditions.

In general, the ORFN© model predicts that the FN of duplex
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Figure 5 Plot of predicted FN versus pulsed laser power for a type
308 austenitic stainless steel (Fe-20.15Cr-10.68Ni-0.059C-
0.026N-1.92Mn-0.78Si-0.38Ti) using the ORFN© model.

Figure 6: Plot of predicted FN versus sample thickness for a type
312 stainless steel (Fe-29.92Cr-8.78Ni-0.11C-0.01N-1.68Mn-
0.2Mo-0.39Si) using the ORFN© model.

stainless steels will be sensitive to cooling rates at moderate values
while the FN of austenitic stainless steels will vary the most at
high cooling rates.   A more detailed evaluation of the ORFN©

model is presented in reference 11.  There, the predictions are
compared with experimental data and good agreement is found.
The initial increase followed by a subsequent decrease in FN for
austenitic stainless steels agrees with measured results.  For
duplex stainless steels, the gradual increase in FN also agrees with
experiment.  The model predictions are in stark contrast to those
of the WRC-1992 and FNN-1999 models (and in fact all previous
FN prediction models) which predict the same FN for a given
alloy regardless of the weld conditions.

Discussion

The development of neural network models for predicting
FN in stainless steel welds represents a significant improvement
over conventional constitution diagrams.  Alloying element
interactions can be taken into account in a more complete manner,
and the influence of additional variables, such as cooling rate, can
be readily considered.  The implementation of neural networks as
a predictive tool has some advantages as well as disadvantages.
The primary disadvantage is that, unlike the constitution
diagrams, the model cannot be displayed in the form of a
convenient figure that could be used directly.  Instead, a
calculation must be made, based on the values of the input
variables and the neural network parameters.  However, the
calculation is a simple one that can be carried out instantaneously
on any computer.  The ability to calculate directly the FN can be
an advantage to the user.  For example, if the neural network is
implemented in the form of a spreadsheet, then compositions can
be inputted and the variations can be readily found.  Parametric
studies (as were done in Figs. 4-6) are particularly simple.  In
addition, the calculations can be programmed for a large dataset
and a large throughput is possible.  For the ORFN© model, where
cooling rate was also considered, the spreadsheet can be set up to
use composition and the weld conditions (power, speed, thickness)
as inputs.  The spreadsheet can then seamlessly predict FN by first

calculating the cooling rate based on the weld condition inputs
and then using the calculated cooling rate as an input for the
neural network model calculation. 

One characteristic of neural network models is that a unique
model does not exist.  Therefore, it is likely that future model
developments will result in improved prediction capabilities,
especially if additional, reliable data are used to train the
networks.

There are several assumptions and simplifications that were
used in the development of the cooling-rate-inclusive model that
should be mentioned.  First, cooling rates were calculated using
the simple Rosenthal equations11,22.  A methodology for
transitioning from 2D to 3D cooling conditions was developed and
this was  satisfactory but not perfect*.  It must be noted that the
model development requires the calculation of the proper relative
cooling rates, and it does not require absolute accuracy in the
calculation of the cooling rates.  Nonetheless, improvements in the
cooling rate assessment may be possible.  Second, for the WRC
portion of the entire dataset, which constituted a major fraction of
the total training dataset, weld conditions were not available and
cooling rates were assigned to the data.  The development of a
training dataset where all the cooling rates are calculated based on
actual welding conditions would be preferred, but such a dataset
is not available.  Third, complications arose with respect to the
measurement of ferrite content in high speed welds since the
welds were small and not amenable to direct FN measurement.
Thus, volume % ferrite was determined and a conversion from
measured volume fraction ferrite to FN was required for some
data.  All of these limitations are discussed in greater detail in
reference 11.  Finally, the FN will vary with position in the weld
since the solidification conditions are not uniform across the
entire weld.  Thus, in principle, it would be useful to add yet
another variable in the neural network model development to
account for the position within the weld.  Such a model could be

*The “hump” in Fig. 6 is an artefact that is a direct result of the

imperfect transition from 2D to 3D cooling conditions as
thickness increases.
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developed but the availability of the appropriate data is a necessity
and the creation of such a database would involve a substantially
larger effort.

In spite of the limitations noted above, the new ORFN©

model provides a predictive capability that has been heretofore
completely absent.  Thus, for example, even though the variation
in FN with location within the weld is not known, the model
allows one to determine the sensitivity of the FN value to the weld
conditions for a given composition.  Consequently, reasonable
estimates of how the FN will change with location within the weld
can be made.  The effect of compositional modifications can be
readily determined, and thus the relative sensitivity of different
alloy compositions can be identified.  The ORFN© model was
developed for arc and pulsed laser welds and is not strictly
applicable to other processes such as EB welding.  However, once
again, the sensitivity of FN for a given composition to changes in
cooling rate can be easily calculated, and realistic estimates of the
change in FN with weld conditions for other processes can be
made.  Thus, a new dimension to alloy design and weld
optimization is available with the ORFN© that has been totally
absent with earlier FN models.

Summary and Conclusions

In the last few years, neural network models for predicting
FN in stainless steel welds have been developed.  These models
are significantly more accurate than previously-developed
constitution diagrams.  Two neural network models were
described in this paper.  The first is a composition-only model that
uses the concentrations of 13 elements to predict FN.  The second
model has been developed more recently and it includes cooling
rate as well as composition when predicting FN.  This latter
model, ORFN©, represents the first prediction model that
quantitatively accounts for the effect of weld conditions on FN.
The ORFN© model correctly predicts the variation in FN due to
solidification mode changes and suppression of the solid-state
ferrite to austenite transformation at high cooling rates.  The
ORFN© model is particularly useful for high-speed welds, duplex
stainless steel welds, and high-power density process welds, but
it is applicable to all conditions.
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