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INTRODUCTION

Stainless steel welds characteristically consist of a two-phase austenite plus ferrite
microstructure.  Ferrite levels may vary from a few percent in austenitic stainless steel welds to more
than 50% in duplex stainless steel welds.  The ability to predict the ferrite content in these welds is
essential for many reasons.  To a large extent, the final ferrite content determines a weldment’s
properties such as strength, toughness, corrosion resistance, and long-term phase stability.  In
addition, ferrite content is a useful indicator of the mode of solidification, which strongly influences
the hot-cracking propensity during welding.  Over the years, various models have evolved to try to
accurately predict the ferrite content in stainless steel welds.  Constitution diagrams, in which the
overall alloy composition is converted into two factors, a chromium equivalent (Creq) and a nickel
equivalent (Nieq), have been developed to predict FN in welds.  Many diagrams have been proposed
since the original diagram of Schaeffler1-7, with the WRC-1992 diagram7 being the most recent and
most accurate.  The various versions of constitution diagrams differ primarily in the coefficients that
are used to convert the alloy composition into the Creq and Nieq; an extensive review is given in
reference 5.

In most commonly used constitution diagrams, the weighted coefficients are constant, and this
means that a given alloy addition’s influence is the same regardless of that element’s concentration
or the concentration of any other alloying additions.  In those cases where non-constant coefficients
were proposed, the applicability of the diagram is limited to a restricted composition range.  Clearly,
constant coefficients cannot represent real behavior very well.  For example, the effect of carbon
should be very different depending on whether carbide forming elements are present or not.  This
limitation has been removed with the development of predictive models based on an artificial neural
network analysis8-11.  Artificial neural networks are ideally suited for predicting ferrite content because
they offer improved flexibility, robustness, and accuracy as a consequence of their use of non-linear
regression methods.  Two recently developed neural network models predict FN as a function of the
concentration of 13 elements8-10.  These models have been shown to be more accurate than the WRC-
1992 constitution diagram.  Furthermore, they account for interactions among alloying elements so
that the predicted impact of a given alloying addition depends on the actual alloy composition.

In addition to the effect of alloy composition, it has been well documented that cooling rate
can have a significant impact on the final ferrite content12-19.  Cooling rate can influence the ferrite
level in two ways: (a) it can change the mode of solidification from primary ferrite formation at low
cooling rates to primary austenite formation at high cooling rates, and (b) it can suppress the solid-
state transformation of ferrite to austenite after solidification, with the extent of suppression
increasing with increasing cooling rate.  The effect of cooling rate was considered qualitatively by
David et al14 but a more quantitative tool for predicting FN as a function of weld conditions is needed.
This paper describes such a model (ORFN©), based on a neural network analysis.  A complete



description of the model can be found in reference 11.

COOLING-RATE-INCLUSIVE MODEL DEVELOPMENT

Neural networks are trained with a training dataset that includes both the input parameters
and the outputs.  In the present case, the input parameters included 13 elemental concentrations and
an additional input relating to the cooling rate.  An optimum network architecture, consisting of 14
input nodes, 6 hidden nodes, and 1 output node  was identified.  The model was trained using the
back-propagation method.  Further details are provided elsewhere11.

The training dataset was comprised of data from three sources.  First, the extensive dataset
that was used to develop the WRC-1992 constitution diagram7 as well as the two composition-only
neural network models8-10 was used.  Unfortunately, there was no information in this dataset
regarding the welding conditions used to generate the data and therefore a quantitative evaluation of
a cooling rate associated with each data point was not possible.  This problem was resolved by
assigning a nominal cooling rate of 10 °C/s to all of the data in this set.  Although somewhat arbitrary,
this solution was unavoidable.  As noted below, the errors associated with this assigned value are not
considered to be excessive.  A second dataset was generated from the work of David et al14.  These
data consisted of a series of pulsed laser welds made at different power levels and weld speeds on
several stainless steel alloys.  Cooling rates were calculated using the method described below.
Finally, a third dataset was generated by making GTA and pulsed laser welds on several stainless steel
alloys, including many duplex stainless steel compositions.  Calculated cooling rates were used in this
dataset as well.  The total training dataset contained nearly 1200 data points.

Cooling rate was calculated, where possible, using the Rosenthal equations for 2D and 3D
cooling conditions.  The calculated cooling rates may not be accurate in an absolute sense, but
absolute accuracy is not necessary.  The key to the neural network analysis is that the calculated
cooling rates place the data in the proper order, that is to say, for two different welding conditions,
the calculations need to properly identify which condition corresponds to a higher cooling rate, and
the absolute values of the cooling rates are not critical.  This is true because the neural network is
trained using these calculated cooling rates and as long as the same cooling rate analysis is used when
implementing the model, the neural network will properly predict the FN.  It was necessary to define
the appropriate conditions for using either the 2D or 3D cooling rate formulations, and an appropriate
procedure was established.  Additional details can be found in reference 11.

The original data contained a mixture of FN measurements and ferrite volume fraction
measurements.  In order to implement the model, one measure of ferrite content was required inthe
training dataset.  Therefore, FN was used as the single measure of ferrite content.  This required the
conversion of ferrite volume fraction data to FN.  This was accomplished by using a linear conversion
of volume fraction to FN and implementing the concept of a normalized FN, scaled according to the
Fe content in the alloy.  Once again, further details may be found in reference 11.

MODEL RESULTS

The neural network model that evolves from the training process produces a series of
weighting factors that are used to relate the inputs to the outputs, via a hidden layer.  The model can
be easily implemented in the form of a spreadsheet, and the calculation of the predicted FN is a simple
process that can be carried out on any modern computer instantaneously.  A comparison of the



predicted versus measured FN for the entire dataset is shown in Figure 1 using three different models:
WRC-1992, FNN-1999 (composition-only neural network model8-9), and ORFN© (cooling rate
inclusive model11).  It is readily apparent that the ORFN© model shows considerably better agreement
with the experimental data than either of the other two models.  Quantitatively, the root mean square
errors for the models are: 9.9 (WRC-1992), 11.0 (FNN-1999), and 4.7 (ORFN©).  As an example
of the improved predictability of the new ORFN© model, a series of data points are encircled in
Figures 1a and 1b.  These represent one of several cases where the same alloy was welded under
different conditions, resulting in different cooling rates and different values of FN.  For the WRC-
1992 and FNN-1999 models, the predicted FN values are constant since these models do not account
for welding conditions.  However, the experimental data points clearly show that the FN values vary,
and this variation is totally missed in these two models.  In contrast, the ORFN© model predicts
different FN values for the same alloy, depending upon the weld conditions, and thus the ORFN©-
predicted values are in much better agreement with the experimental measurements.

One more example is shown in Figure 2, where the FN is plotted against the calculated
cooling rate for a 316 austenitic stainless steel alloy.  Experimental data are shown as individual data
points.  At moderate cooling rates, the experimental data show a slight increase in FN with increasing
cooling rate.  However, beyond a calculated cooling rate of ~3x105 °C/s, the measured FN drops
precipitously to 0.  This is an indication that the solidification mode has changed from primary ferrite
formation to primary austenite formation.  The model predictions are also shown in Figure 2.  The
predicted FN for both the WRC-1992 and FNN-1999 models are constant since they do not account
for any cooling rate effects.  In contrast, the predicted FN using the ORFN© model shows an increase
in FN followed by a drop to 0 as the cooling rate increases, and the predictions are in good agreement
with the experimental data.  It is also noteworthy that the ORFN© model predicts the same FN as the
other two models at low cooling rates.  In fact, it was found that the new ORFN© model does not
sacrifice accuracy at low cooling rates compared to the other two models11.  Additional information
on the ORFN© model, and further examples of predictions can be found elsewhere11,20.

SUMMARY and CONCLUSIONS

A new model (ORFN©) that takes welding conditions into account when predicting FN of
stainless steel welds has been developed.  Several simplifications and assumptions were required
during the development of the model.  However, the new ORFN© model represents the first
prediction model that quantitatively accounts for the effect of weld conditions on FN.  It has been
shown that the ORFN© model correctly predicts the variation in FN due to solidification mode
changes and suppression of the solid-state ferrite to austenite transformation at high cooling rates.
The ORFN© model is particularly useful for high-speed welds, duplex stainless steel welds, and high-
power density process welds.
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Figure 1: Plots of predicted FN versus measured FN for the expanded dataset that includes high-speed welds, laser welds, and additional
duplex stainless steel welds.  The predictions are made using the three different models: (a) WRC-1992, (b) FNN-1999, and (c) ORFN©.



Figure 2: Plot of FN versus (log) cooling rate.  Filled squares represent
experimental data and lines represent predicted FN for three different models:
WRC-1992 (short dashed line), FNN-1999 (long dashed line), and ORFN© (solid
line).
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