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Motivation

• Velocity (friction) control during sliding

• Ability to reach desired sliding velocity

• Achieve fast transient times

• The applied control is limited in strength

• Requires only limited accessibility 



   Robustness of Friction Mechanisms

 Friction is ruled by robust dynamics

 good qualitative agreement between variety of
models and types of interaction potentials used for a
model

– choice of parameters may be even more important
than the choice of a model !!!

– Initial conditions !



Theoretical Modeling

• Phenomenological models
• F-K-Tomlinson model

/ /j j j j j jmX X U X V X fγ η+ = −∂ ∂ − ∂ ∂ + +&& &

m is the mass of the sliding particle
γ is the dissipation coefficient
U is the interaction potential

V is surface potential
f is the external driving force

η is the thermal noise (temperature effect)



The Model

1 1sin ( 2 )j j j j j jx x x f x x x Controlγ κ + −+ + = + − + +&& &
Driven Frenkel-Kontorova Model

xj - position of the particle j
γ - single particle dissipation
f -  external forcing
κ - the ratio of the interparticle
     to substrate interactions



Natural Motion

• Free Sliding: v ≈ f/γ

• No sliding (fixed point): v = 0

• Low velocity (stick - slip) motion: v = O(0.1)

• Chaotic motion: 0 < v < f/γ
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Values of the Sliding Velocities

Only particular values of velocities
of the “uncontrolled motion” can be observed:

v = f/γ  - free sliding

v = vchaotic = 1.8 (just a single value
                            for given parameter set)
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Y. Braiman, F. Family, and H. G. E. Hentschel,
Phys. Rev. E 53, R3005 (1996)

N is the number of particles 
and k is an integer



“Falling Domino” Dynamics
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Locking of the Temporal and Spatial
Dynamics (Modes)

Small size and confinement
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Each mode is characterized by
different frictional behavior
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Sliding on Disordered Substrate

Friction coefficient can be significantly reduced
 (by orders of magnitude) when sliding on irregular surfaces
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Friction Control During Sliding

• Feedback techniques - external perturbations

Benefits: 
• Ability to continuously vary the average sliding velocity
• Fast transient times

• Non-feedback techniques - periodic perturbations

arg( )t et cmControl v v βηα= −

η= 1 if vtarget < vcm
    -1 if vtarget > vcm

J. Barhen, S. Gulati, and M. Zak, IEEE Computer June 1989, pp 67-76

Mechanisms:
• Stabilizes already existing structures
• Creates new structures



Strength of the Control
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Fast Transient Times
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Performance of the Control Algorithm
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Friction Control by Surface Vibrations
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Demonstration of the Effect of Surface
Vibrations
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Velocity is controlled by the amplitude of surface vibrations.

Identical vibration amplitudes Random vibration amplitudes



Transition to Sliding Behavior
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Summary

We proposed control algorithm that enables us to control
the average velocity (friction coefficient) of the chain during sliding.

Benefits:
• Ability to continuously vary the average sliding velocity
• Ability to reach desired sliding velocity
• Fast transient times
• The applied control is limited in strength
•  Requires only limited accessibility

Mechanisms:
• Stabilizes already existing spatial structures
•  Creates new spatiotemporal structures
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