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Hydrogen Futures



Hydrogen Demand Is Large 
and Growing Rapidly

• World consumes 50 million tons of H2/year
− ~80% intentionally produced; remainder, by-product H2
− 200 GW(th) if the H2 is burned
− 4 to 10% growth per year

• Within 10 to 20 years, the energy to 
produce H2 in the U.S. may exceed current  
energy production from nuclear power

• Rapid hydrogen-demand growth to 
produce clean fuels from lower-grade 
crude oils



Liquid Fuels Production Is Rapidly Becoming 
the Major Market for Hydrogen
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The Growing Hydrogen Demand Creates a Bridge to the 
Hydrogen Economy—With a Future Hydrogen Energy 

Demand That May Exceed That for Electricity
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Hydrogen Could Exceed Electricity 
As An Energy Carrier By 2050

• Auto companies and Presidential initiate 
to develop fuel cells for cars within 10 y

• Fuel cells require H2
• If H2 replaces liquid fuels, H2 demand may 

exceed electricity demand
• Technological transitions typically take 

several decades
− 20 years for France to move from oil to nuclear
− 40 years for electricity
− 30 years for horses to cars



Compatibility of Nuclear Energy 
for Hydrogen Production

Intrinsic Characteristics of Different 
Technologies Determine the Viability of 

Combining Technologies



The Intrinsic Characteristics of Nuclear Power
Are Compatible with Hydrogen Production

(Remote Siting, Scale of Operations, and Full-Load Operations)
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By 2050, Hydrogen Production May Be the 
Primary Application of Nuclear Energy

(Assuming Fuel Cells Power Vehicles)
Production Options
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Hydrogen Production Using 
Nuclear Energy

Temperatures >750°C
Low Pressures (Highly Desirable)

Isolation



Characteristics of Current Hydrogen
Production Techniques

• Most H2 is made from natural gas
− Heat + methane (CH4) + water (H2O) 

hydrogen (H2) + carbon dioxide (CO2)
− Endothermic process with heat input to 900°C

• Water electrolysis is used to produce 
small quantities of H2
− Inefficient: heat to electricity to chemical 

energy (H2)
− Viable where electricity is cheap (night time)



Nuclear-Assisted Hydrogen Production Uses High 
Temperature Heat (to 900oC) To Reduce Energy 

Requirements For Steam Reforming of Natural Gas
(Development Program in Japan)
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Hot Electrolysis Hydrogen Production Requires High-
Temperature Heat (700-900°C) and Electricity

(Current Technology Expensive)
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Thermochemical Production of 
H2 Is The Leading Technology

• Heat + water hydrogen (H2) + oxygen (O2)
• Heat input >750°C
• Low pressure

− Drive chemical reactions
− Minimize materials requirements

• Lowest potential costs
− Projected efficiencies of >50%
− Projected best long-term economics (60% of cold 

electrolysis)



Thermochemical Processes Convert High-
Temperature Heat and Water to H2 and Oxygen

(Example [leading candidate]: Iodine–Sulfur Process)

I  + SO2 2 2+ 2H OH SO  2 4

Heat

Oxygen Hydrogen

Water

800-1000 Co

2H O2
H2

2HI + H2 4SOH2 2 2O + SO  + ½O
H2 2 + I

I2SO2

O2

2HI

H2 4SO HI

ORNL DWG 2001-102



High-Temperature, Low-Pressure Heat 
Required For Nuclear Hydrogen Production

Production Method Temperature (°C)

Hot Electrolysis 700-900

Assisted Steam Reforming To 900

Thermochemical >750



The Advanced High-
Temperature Reactor 

(AHTR)

Designing a Reactor for Hydrogen 
Production (High Temperature and Low 

Pressure) and Electricity Production



Advanced High-Temperature Reactor
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The AHTR Combines Two Technologies 
To Produce High-Temperature Heat

• Coated-particle, graphite-matrix fuel
− Demonstrated temperature limit of ~1200ºC
− Same fuel technology planned for modular high-

temperature gas-cooled reactors
− Compatible with molten fluoride salts

• Molten fluoride salt coolant (examples: 
(NaF/ZrF4, 7LiF/BeF2) 
− Very low pressure (boils at ~1400ºC)
− Efficient heat transfer

• Similar to that of water
• Significantly higher reactor coolant exit temperatures for the 

same fuel temperature limits compared with helium 
− Coolant for proposed fusion energy plants
− Developed for the Aircraft Nuclear Propulsion Program



The AHTR Uses Coated-Particle Fuel: Same Fuel 
As High-Temperature Gas-Cooled Reactors 

(Example: High-Temperature Engineering Test Reactor, 950ºC Helium 
Exit Temperatures; Japan)
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The AHTR Uses Molten Fluoride Salt Coolants: 
High-Temperature, Low-Pressure Coolants

(Developed for the 1950s Aircraft Nuclear Propulsion Program)
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Liquid Coolants Deliver All The Heat At High 
Temperatures To Match H2 Plant Requirements

(Pumping Losses Restrict the Capability of Gas Coolants)
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The Safety Case for the AHTR:
Accident Control

• Low-pressure (subatmospheric) coolant
− Escaping pressurized fluids provide a mechanism for 

radioactivity to escape from a reactor during an accident
− Low-pressure (<1-atm) salt coolant minimizes accident 

potential for radioactivity transport to the environment
• Molten salt is a secondary barrier to prevent 

radionuclide releases to the environment (fission 
products and actinides dissolved in salt)

• Passive decay-heat-removal systems similar to 
those of proposed modular liquid-metal reactors



The High-Temperature, Low-Pressure, Liquid Coolants 
Enable Passive Decay Heat Removal In Large Reactors
(AHTR Using Modular Liquid-Metal Reactor Decay-Heat System)
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Electricity Production

Efficient Hydrogen Production Implies 
Efficient Electricity Production



The Temperatures At Which Nuclear Heat Is 
Supplied Determines Electrical Plant Efficiency
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AHTR High-Temperature Heat Enables Use of a Multi-Reheat 
Brayton Cycle With Efficient Electric Production

(48% at 750°C, 59% at 1000°C)
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The AHTR Has the Potential for Excellent 
Economics Because It Is a Liquid-Cooled, 
Low-Pressure, High-Temperature Reactor

• Characteristics of AHTR for comparison
− 1000 MW(e) [2000 MW(th)]
− Passive decay-heat cooling
− Gas-turbine power cycle

• Concept is new so no bottoms-up 
estimate is available

• Use relative comparisons
− GT-MHR (General Atomics)
− S-PRISM (General Electric)
− LWR (Existing Technology)



Relative Comparison of the AHTR With the 
Gas-Turbine Modular Helium Reactor

• GT-MHR
− 600 MW(th)
− Size limited by passive decay heat cooling system

• Common Components
− Fuel and fuel cycle
− Gas-turbine power cycle

• AHTR specific capital cost 70% of GT-MHR
− Larger size (2000 MW[th)) because of S-PRISM decay 

heat removal system (Liquid, low-pressure coolant)
− Economics of scale using 0.7 scaling factor



Relative Comparison of the AHTR With the 
S-PRISM Liquid-Metal Fast Reactor

• S-PRISM
− 380 MW(e) [1000 MW[th]) with 9 m vessel diameter
− Size limited by passive decay heat cooling system

• Common Components
− Low pressure liquid systems  
− Same basic passive decay-heat removal system

• Plant size of a 1000 MW(e) AHTR similar to a 380 
MW(e) S-PRISM
− S-PRISM vessel includes core and heat exchangers; 

AHTR includes only the core (no intermediate loop)
− Higher temperatures allows same size decay-heat 

cooling system (controls vessel size)
− Liquid coolant allows AHTR power density between gas-

cooled and liquid-metal-cooled reactor



Relative Economic Comparison of the 
AHTR With A Light Water Reactor

• LWR
− 1000 MW(e) [3000 MW[th])
− Steam cycle

• AHTR Areas of improved economics
− Passive decay heat removal
− Higher efficiency (smaller power cycle, smaller decay 

heat cooling system, smaller cooling towers, etc.)
− Lower cost gas-turbine cycle (higher power density with 

much smaller equipment)



Conclusions
• Large, growing hydrogen demand
• Hydrogen may be the biggest use of 

nuclear energy by mid-to-late century 
(depends upon vehicle fuel cells)

• Efficient H2 production places major 
demands on the reactor

• The AHTR is designed to match H2
production requirements

• AHTR characteristics derive from use of a 
high-temperature, low-pressure coolant
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