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In-core Flux Measurement Technology
has Significant Limitations

• Self powered neutron detectors are inherently slow, small-signal
devices

• Fission chambers are large and tend to burn out rapidly
• Gas filled detectors require high integrity sealing which becomes

more challenging as temperatures increase
• Solid-state form of detector has several advantages

– Small (mm square)
– Mechanically robust (no seals)
– Temperature tolerant (wide band-gap solids)
– Inexpensive

• Local flux peaking limiting operating factor
– Fuel failure directly tied to local flux peaking
– High accuracy flux map may allow tighter operating margins
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Solid-State, In-core Flux Monitor
Functions as a Flux Sensitive Resistor

• Wide band-gap
crystal have very
high resistances

• Radiation
interaction
produces free
charge carriers

• Motion of free
carriers under
applied field is a
current

• Magnitude of
current is
measure of flux
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Requirements for Proper Functioning

• Neutrons produce
dominant amount of
charge carriers
– Thermal and

gamma induced
carriers produce
false response

• Carriers are free to
move

• Applied field
penetrates the
crystal

• Neutron sensitivity
invariant with
fluence
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Group III Nitrides Have Advantageous
Properties

• High charge mobility
– Good field penetration
– High dielectric breakdown strength

• Wide band-gap
– Insignificant thermal generation of carriers

• High electrical resistance > 1014 W-cm common

• High-temperature tolerance with very good chemical resistance
• High-mechanical robustness
• Reasonable fabrication route

– Commercially available
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Key Environmental Variables

• 20 °C to 900 °C
• 104 to 1014 neutrons/(cm2-s) startup to full power
• Gamma dose rate up to 106 Gy/hr
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10Boron-Nitride Background

• Two common material phases
– Hexagonal

• Soft, polycrystalline (white), CVD process, widely available in a variety of forms

– Cubic
• Very hard, only readily available in a few forms (grinding material)

• Long range charge carrier transport
– Electron mobility roughly 500 cm2/(V-s)

• Very high neutron blackness
– Macroscopic thermal cross section ~125 [1/cm]
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Aluminum-14Nitride Background

• Single phase (hexagonal - wurtzite structure)
• Natural Nitrogen is 99.6%14N - remainder 15N
• Hardness comparable to quartz
• High thermal conductivity 175 W/(m-K)
• Electron mobility ~100 cm2/(V-s)
• Lower neutron interaction probability

– Macroscopic thermal cross section 0.087 [1/cm]
• Commercially available as polycrystalline solid (electronic

substrate) - http://www.aluminumnitride.com

† 

14N+1nÆ14C+1p
EC = 585keV
E p = 42keV
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Hexagonal Boron Nitride vs. Aluminum
Nitride

• Very high neutron blackness
• Q ~2.31 MeV
• Band gap 4.07 eV min, 4.2 eV

direct
• Boron Number Density =

3.23e22 atoms/cm3

• Interaction Rate (in 1e-12 m3)
– 1.2e10/s at power; 1.2/s at

startup

• Daily burn-up at power ~0.969
• Heating rate at power 4.4

kW/cm3

• Lower neutron blackness
• Q~627 keV
• Band gap 6.28 eV
• Nitrogen Number Density = 4.75e22

atoms/cm3

• Interaction Rate
– 8.7e6/s at power; 8.7e-4/s at startup

• Annual burn-up at power ~0.994
• Neutron to gamma dose at power

~1:1 (gamma dose rate ~106 Gy/hr)
• Must use in 15N compensation

channel for gamma correction
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Current Fabrication Concept

Al15N

Al14N

Bias Voltage

Ceramic Cement

Evaporated Nickel Contacts

Silver Paint Contacts

Nickel Wiring
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Main Initial Research Thrusts

• What mechanical arrangement will survive thermal
cycling?

• How can I obtain 15N enriched AlN?
• What is the minimum detectable flux?
• How does the response change with fast fluence?
• How does the response change with dose?
• What is the optimum device thickness?


