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SUMMARY 
Gaps in the MCNPX code release 2.1.5 and release 
2.2.3 were closed to enable running the code in 
multitasking mode on distributed memory parallel 
machines via the Parallel Virtual Machine (PVM) 
software. Performance tests were performed to 
check the runtime behavior of the code. These test 
show that the code scales well on small sized 
cluster machines, and provides a significant 
speedup of SNS nuclear design analyses. 
 
I. BACKGROUND 
With the recent computer software and hardware 
developments, parallel machines become much 
more accessible to users who demand the 
application software to keep up and make use of 
the new capabilities. In this context it was seen that 
Monte Carlo applications, like the multi particle 
high-energy transport code MCNPX, 1 could gain 
significantly from parallel platforms. The benefit for 
the nuclear analyst is a shorter turn around of 
calculations, results with smaller statistical 
uncertainties, and the capability to tackle problems 
that were out of reach before. 
 
Although the MCNPX code is based on MCNP4B,2 
which already provides parallel capabilities,3 
MCNPX could not make use of it. The high-energy 
physics models, which MCNPX inherited from 
LAHET4 or which were added later, were not 
supported in the parallel scheme. An effort was 
launched to overcome this limitation to speed up 
the Spallation Neutron Source (SNS)5 nuclear 
design efforts.  
 
II. IMPLEMENTATION 
This task was realized in six implementation steps: 

- The MCNPX parallel implementation 
inherited form the MCNP4B code was 
replaced by the more flexible and 
transparent MCNP4C6 modules, 

- The initialization of the high energy physics 
models was added to the daughter 
processes,  

- The option of writing files of high energy 
reaction histories was updated for the 
parallel mode, 

- The mesh-tally feature was updated to be 
supported in the parallel mode, 

- A new tally was added to sample the 
isotope production in the high-energy mode 
of the code. 

 
A. The MCNPX Multitasking Strategy 
The MCNPX code was built on the MCNP4B code, 
which is equipped with distributed and shared 
memory parallel capabilities. In MCNP4B, all 
multitasking coding both for the parent and daughter 
processes is pressed into one subroutine. For the 
MCNP4C version of the code, the multitasking was 
reworked separating the parent and daughter tasks, 
which resulted in a more transparent 
implementation. Except for some improvements 
with regard to allowing shared memory application 
in distributed systems, the strategy of multitasking 
seems to be unchanged from the MCNP4B version. 
Hence it was decided to update MCNPX with the 
implementation of MCNP4C. 
 
The multitasking strategy is briefly described as 
follows: 

• One parent process spawns and controls 
up to 200 daughter processes.  

• The parent defines subtasks (the length of 
which can be influenced by the user) and 
updates the runtime information after 
finishing those.  

• The parent divides each subtask is into 
micro-tasks (number of available daughter 
processors times 5-27 depending on the 
differences in cpu speed of the daughter 
processes), and distributes the micro-tasks 
to the daughters until all micro-tasks are 



done. This scheme supports an even 
balanced load on the daughter processes 
and minimizes processor dead times, 
which is especially important for 
heterogeneous systems, and systems with 
uneven loads on processors. 

• The parent continuously monitors the 
daughter processes, detects and removes 
stalled daughter processes, and 
redistributes the micro-tasks of stalled 
daughter processes to available daughter 
processors. 

• Upon finishing all subtasks, the parent 
evaluates and prints the runtime statistics 
of the summary tables and tallies. 

 
B. Extending Multitasking to the High Energy 
Modules 
One of the parent's first actions after spawning the 
daughter processes is to broadcast the problem 
information to the daughter processes. MCNP4B/C 
distinguishes between fixed, variable and ephemeral 
storage, particle storage, and tally storage. Hence, 
it is an easy task to determine what the daughter 
processes need for problem setup.  
 
In the extension of the code to MCNPX this clear 
storage management was not continued. The new 
functionality was basically achieved by adding the 
high-energy subroutines from the LAHET code 
system and providing subroutines that build the link 
to the legacy code. All LAHET reaction models 
share information via common blocks that evolved 
historically resulting in unstructured and 
undocumented data arrays. None of the models 
accumulates particle information. The high-energy 
physics models merely determine the outcome of 
particle interaction with matter on a per particle 
basis. Sorting the numerous common blocks in 
fixed and variable variables would take an enormous 
effort and was thought to be unnecessary for 
distributed memory multitasking. For shared 
memory multitasking it is essential to allow parallel 
tracking of individual particles. As we intended to 
apply the code mainly on distributed memory multi-
processor platforms, we made the decision to limit 
multitasking in MCNPX to the distributed memory 
capability via PVM.7  
 
The piece missing to run MCNPX in the distributed 
memory parallel mode is the initialization of the 
high-energy models including the material 
description of the physics models. It was found that 
this initialization could be achieved solely from the 

common MCNP4B storage in the daughter 
processes after having received all the information 
from the parent process.  
 
C. Extending the History Tape Capability 
Some of the particle transport information, like 
isotope production/destruction, gas production, 
etc., is gained from the MCNPX code high-energy 
physics model regime by post-processing a history 
tape, which contains the events of nuclear reaction 
outcomes.  
 
Similar to writing a surface source file, the history 
records are written on a scratch unit by the 
daughter processes and transferred to the parent 
upon finishing a subtask. The parent finally writes 
the master history file.   
 
Fortran compiled codes on LINUX platforms suffer 
from a file size limit of 2 Gigabyte. With current 
computers, this is a real limitation, especially as we 
envision large scale computing with the multitasking 
capability. Already the predecessor of MCNPX, the 
LAHET code, allowed extending this limit by writing 
continuation files. This capability was revived for the 
MCNPX code, not only for the parent's history tape, 
but also for the daughters writing their scratch units. 
  
D. Extending the Meshtally Feature 
The meshtally is a new feature of the MCNPX code 
and as such is not only completely decoupled from 
the general tally management, but also from the 
input processing. Only the storage is kept under the 
MCNP management. The tally arrays were 
extended to allow for multitasking, and coding has 
been added to initialize the meshtally feature on the 
daughter processes, and to transfer the tally 
subtask results from the daughter to the master 
process. 
 
E. Isotope Production Tally 
Generating isotope production rates for activation 
analyses is a frequent task to be performed by 
MCNPX in the design of nuclear and/or accelerator 
facilities. Writing and post-processing a history file 
as described in section C was found to be a real 
bottleneck to accomplish this task, especially 
because the post-processing has to be performed 
with a serial code. It seemed natural to sample for 
the isotope production online in MCNPX with the 
benefit avoiding storage requirements of huge 
history files and the long post-processing step. An 
additional benefit is that the user now can run as 
long as necessary to produce results with 



statistical errors not dependent on file size limits of 
history files. 
 
The isotope production tally is invoked by a single 
keyword followed by the cell numbers of cells to be 
investigated.  If no cell number is provided, the code 
performs the analysis for all material cells in the 
problem. 
 
For large problems, the limiting factor of the isotope 
production tally might be the memory required for 
sampling. Therefore one is directed to get as 
accurate an estimate of the storage requirement for 
each cell as possible.  For setting up the storage, 
MCNPX determines the maximum mass and charge 
numbers for each cell from the material description.  
It then screens the "gamma-library" PHTLIB for the 
number of possible isotopes, groundstates, as well 
as isomeric states, below this maximum mass and 
charge also considering the added projectile mass 
and charge. A contingency is provided for produced 
isotopes that may be generated by the physics 
reaction models, but are not listed in the PHTLIB. 
 
III. TESTING 
The program development was performed on two 
platforms: the IBM/AIX4.2 in IBM/RS6K 
workstations and on Intel-Redhat LINUX 6.2, 
applying the IBM XL-Fortran/C and the Portland 
Group standard Fortran PGF77/GnuCC compilers, 
respectively. Both platforms provide decent 
debugging tools, which was of great advantage in 
tracing down programming errors. The choice of 
platforms was directed by the availability of 
IBM/SP2 and Intel-Beowulf LINUX clusters. 
Surprisingly, the MCNPX executables created with 
the IBM/AIX-f77 and LINUX-pgf77 compilers produce 
identical results.  
 
It is MCNP quality assurance philosophy to be able 
to obtain reproducible results in two successive 
calculations performed with the same executable 
and with the same input files. This philosophy is 
also extended to multitasking meaning that a serial 
and a multitasking run have to give exactly the 
same results. This concept was the QA guideline 
for the implementation task. 
 
Simple test cases were continuously run and 
compared against output produced by the original 

serial codes in order to monitor the stages of 
program development to accomplish this task. 
Deviations from the nominal output were easily 
picked up and resolved by code corrections. Further 
alpha test runs were performed with large-scale 
SNS problems to check reliability, performance and 
matching of serial and multitasking results. After 
finishing the test positive, the codes were released 
for production runs.  
 
A valuable tool was found to be the XPVM8 tool, 
which is a real time performance monitor for PVM 
applications, as well as a PVM debugger provided 
by the authors of PVM. This tool writes a file of all 
the PVM activities that can be assessed manually 
and converted to charts of the runtime performance, 
the processor utilization and the message queue. 
The XPVM tool takes a long time analyzing a PVM-
activity file scaling with the size of this file. For this 
reason, only problems with a small number of 
source particles were investigated.  
 
Examples of runtime performance are presented in 
Fig. 1 for a test problem of 200 source protons of 1-
GeV energy impinging on lead sphere in water 
environment.  Results for the serial run, for 2-, 4-, 
and 8- processor multitasking runs are compared. 
And in detail discussed to demonstrate the program 
flow. The colors of the plots mean: 
 

Green color indicates an active process 
performing user activities, 
Yellow color shows periods when a  
process performs only PVM tasks, 
White color shows the process in waiting 
stage,  
Black means that the colors are not resolved 
on the time scale because the process 
periodically flips from green to yellow and, 
Red lines indicate messages passed from 
one process to the other. 

 
In principle PVM can establish and manage multiple 
distributed memory processes on a single 
processor, which practically does not make many 
sense as only one process can be active at a time. 
It is assumed further that a daughter process is 
served by a separate processor. 
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Fig. 1: Runtime Chart generated with XPVM for a 200 source particle problem run serial and with a 
different number of tasks with MCNPX. The phases of the multitasking runs are indicated with 
master initialization (MI), daughter initialization (MI), and subtask 1-4 (ST1-ST4). 
 
 
In the nine-processor runtime graph, computer 
names appear twice for different processes because 
the computers are dual processor machines. 
 
All the cases were run on the Beowulf cluster Argos 
of the SNS Experimental Facilities Division of Oak 
Ridge National Laboratory. All runtime charts are on 
the same time scale. This means that in this case 
not much time is gained by performing the problem 
in the multitasking mode. This is not typical, but an 
artifact of the small number of source particles 
tracked.  
 
For all multitasking runs the master process needs 
some time to set up the problem reading and 
interpreting the input before it spawns the daughter 
processes. The time period it needs depends on 
how fast it reads the input data from the hard disk. 
Because of other activities on the machine that runs 
the master process it took the five-processor run a 
little longer than the others.  

 
After spawning, the master broadcasts data arrays 
to the daughter nodes needed for their initialization. 
The length of this process depends on the available 
network bandwidth causing differences in the length 
of the initialization phase of the daughter 
processes.  
 
After the master received the message ready to go 
from all daughter processes, it launches the 
subtasks, here 50 particles per subtask, requesting 
50/(number of daughter processes) from each 
processor at for the first subtask. For routine 
calculations the first subtask is very short, at 
maximum 200 source particles long, just as much 
as is needed to check if all daughter processes are 
performing well.  
 
For the following subtasks the master splits the 
subtask size into (number of daughter processes) x 
(5 to 27) so called microtasks. One microtask is 



submitted to a daughter process at a time, which 
will receive another microtask upon request from the 
master until all microtasks are preformed. Needless 
to say that the master manages the distribution. 
The master also tracks how many microtasks each 
process performed and increases the average 
microtasks per process from 5 to maximal 27 in 
case of imbalance. This enables the master to 
respond to changes in the machine loads 
minimizing waiting times from unfinished 
processes. If one process doesn’t respond for a 
long time, the master will not serve it and will 
redistribute the lost microtasks to the other 
available processes. 
 
At the end of each subtask the daughter processes 
send the results back to the master, which updates 
its summary and tally arrays subsequently. Upon 
finishing all subtask the master performs the 
statistical analysis of the tally information and 
finishes the run with the printout.  
 
As our test cases use only a small subset of the 
MCNPX capabilities, later on rigorous checks were 
performed employing the complete test case suits 
provided with the MCNPX package (34 test 
problems for MCNPX_2.1.5, and 42 test problems 
for MCNPX_2.2.3). In three test problems, tracking 
changes were identified, meaning that the basic 
summary tables show differences comparing serial 
versus multitasking runs. In four additional 
problems, differences in tallies were noted, besides 
numerous differences in tally fluctuation charts and 
other peripheral output. These test reveal that some 
work is waiting to resolve all these issues. 
 
 
IV. PERFORMANCE  
A large test problem was performed on the LINUX 
Beowulf cluster Argos to investigate the 
performance of the multitasking mode of MNCPX.  
 
As test problem served the SNS target station 
model requesting information about the neutron 
leakage distributions from the moderators located 
on the top and the bottom of the flat mercury target 
due to 1GeV protons. The model consists of over 
300 cells, 6 sets of point detectors, and 4 sets of 
surface current tallies. The serial run of the problem 
consumed about 6200 minutes of cpu time for 
1,000,000 source protons. The problem was run 

serial and in the multitasking mode on 2, 4, 8, and 
16 processors. The wall clock times of the runs 
were monitored and evaluated.  
 
This test problem used the default subtasking 
scheme, starting with a size of 200 particles for the 
first subtask, followed by a size of 1000 particles up 
to 20,000 particles, by a size of 2000 particles up to 
40,000 particles, by a size of 4000 particles up to 
80,000 … ending with a size of 64,000 particles up 
to 1,000,000 source particles. This scheme involves 
many rendezvous of master and daughter 
processes.  
 
Figure 2 presents the scaling behavior of the runs 
involving different numbers of processors in terms of 
the numbers of source particles calculated per 
minute (throughput). The theoretical curve assumes 
a linear increase of the throughput with the number 
of processors. In practice the throughput, calculated 
the (number of calculated source particles/wall 
clock time) is lower because the master process 
never contributes in particle tracking, and PVM 
overhead time and processor waiting times sum up. 
The processor efficiency, plotted in Fig.3, is 
calculated as the ratio of practical and theoretical 
throughput. It is obvious that the processor 
efficiency is especially low for the minimum 
processor multitasking case with 64%, and rises as 
processors are added to the run, because the 
overhead time from the master processor is then 
distributed through more processors. 
 
Also of interest is to compare the results not adding 
the master process to the timing. This gives an 
indication about the penalty paid by the PVM 
message passing and waiting times. Figure 4 
presents the throughput plotted versus the 
productive processors showing almost a lineup of 
theoretical and practical curves. The efficiency of 
the productive processors does in no considered 
case drop below the 90%. 
 
It would be of interest to extend these performance 
curves to higher numbers of processors. Also of 
interest would be to study how the performance can 
be improved by reducing the numbers of subtasks. 
Now, since the multitasking MCNPX has been 
made available to the neutronics group of the SNS 
Project, the computer cluster is very loaded, and it 
is almost impossible to perform such studies. 

 



 
Fig. 2: Average calculational speed of a large-
scale problem run with MCNPX in serial and 
multitasking mode with different numbers of 
processors.  
 

 
Fig. 3:  Average processor efficiency of a large-
scale problem run with MCNPX in serial and 
multitasking mode involving a different 
number of processors.  
 

 
 
 
Fig. 4: Calculational speed of the daughter 
nodes for a large scale problem run with 

MCNPX in serial and multitasking mode with 
different numbers of processors.  
 
 

 
 
Fig.  5: Efficiency of the daughter processors 
for a large scale problem run with MCNPX in 
serial and multitasking mode involving a 
different numbers of processors.  
 
 
V. CONCLUSION 
After closing some gaps in the MNCPX code 
considering the applicability of the code to run on 
distributed memory parallel computers under PVM, 
performance tests have proven that significant 
speedups can be achieved in transport calculations 
on a Beowulf-type computer cluster.  Some work 
remains to be completed to close the coding gaps 
for shared memory systems, and to clean up 
inconsistencies in some of the test problems 
distributed with the MCNPX package.  
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