
MCNPX RUNNING PARALLEL UNDER PVM

Franz X. Gallmeier

Oak Ridge National Laboratory
P.O. Box 2008, MS 6474

Oak Ridge, Tennessee, 37830, U.S.A.
(865) 574-9675

gallmeierfz@ornl.gov

Phillip D. Ferguson

Oak Ridge National Laboratory
P.O. Box 2008, MS 6474

Oak Ridge, Tennessee, 37830, U.S.A.
(865) 241-5702

fergusonpd@ornl.gov

SUMMARY
Gaps in the MCNPX code release 2.1.5 and release
2.2.3 were closed to enable running the code in
multitasking mode on distributed memory parallel
machines via the Parallel Virtual Machine (PVM)
software. Performance tests were performed to
check the runtime behavior of the code. These test
show that the code scales well on small sized
cluster machines, and provides a significant
speedup of SNS nuclear design analyses.

I. BACKGROUND
With the recent computer software and hardware
developments, parallel machines become much
more accessible to users who demand the
application software to keep up and make use of
the new capabilities. In this context it was seen that
Monte Carlo applications, like the multi particle
high-energy transport code MCNPX, 1 could gain
significantly from parallel platforms. The benefit for
the nuclear analyst is a shorter turn around of
calculations, results with smaller statistical
uncertainties, and the capability to tackle problems
that were out of reach before.

Although the MCNPX code is based on MCNP4B,2
which already provides parallel capabilities,3
MCNPX could not make use of it. The high-energy
physics models, which MCNPX inherited from
LAHET4 or which were added later, were not
supported in the parallel scheme. An effort was
launched to overcome this limitation to speed up
the Spallation Neutron Source (SNS)5 nuclear
design efforts.

II. IMPLEMENTATION
This task was realized in six implementation steps:

- The MCNPX parallel implementation
inherited form the MCNP4B code was
replaced by the more flexible and
transparent MCNP4C6 modules,

- The initialization of the high energy physics
models was added to the daughter
processes,

- The option of writing files of high energy
reaction histories was updated for the
parallel mode,

- The mesh-tally feature was updated to be
supported in the parallel mode,

- A new tally was added to sample the
isotope production in the high-energy mode
of the code.

A. The MCNPX Multitasking Strategy
The MCNPX code was built on the MCNP4B code,
which is equipped with distributed and shared
memory parallel capabilities. In MCNP4B, all
multitasking coding both for the parent and daughter
processes is pressed into one subroutine. For the
MCNP4C version of the code, the multitasking was
reworked separating the parent and daughter tasks,
which resulted in a more transparent
implementation. Except for some improvements
with regard to allowing shared memory application
in distributed systems, the strategy of multitasking
seems to be unchanged from the MCNP4B version.
Hence it was decided to update MCNPX with the
implementation of MCNP4C.

The multitasking strategy is briefly described as
follows:

• One parent process spawns and controls
up to 200 daughter processes.

• The parent defines subtasks (the length of
which can be influenced by the user) and
updates the runtime information after
finishing those.

• The parent divides each subtask is into
micro-tasks (number of available daughter
processors times 5-27 depending on the
differences in cpu speed of the daughter
processes), and distributes the micro-tasks
to the daughters until all micro-tasks are

done. This scheme supports an even
balanced load on the daughter processes
and minimizes processor dead times,
which is especially important for
heterogeneous systems, and systems with
uneven loads on processors.

• The parent continuously monitors the
daughter processes, detects and removes
stalled daughter processes, and
redistributes the micro-tasks of stalled
daughter processes to available daughter
processors.

• Upon finishing all subtasks, the parent
evaluates and prints the runtime statistics
of the summary tables and tallies.

B. Extending Multitasking to the High Energy
Modules
One of the parent's first actions after spawning the
daughter processes is to broadcast the problem
information to the daughter processes. MCNP4B/C
distinguishes between fixed, variable and ephemeral
storage, particle storage, and tally storage. Hence,
it is an easy task to determine what the daughter
processes need for problem setup.

In the extension of the code to MCNPX this clear
storage management was not continued. The new
functionality was basically achieved by adding the
high-energy subroutines from the LAHET code
system and providing subroutines that build the link
to the legacy code. All LAHET reaction models
share information via common blocks that evolved
historically resulting in unstructured and
undocumented data arrays. None of the models
accumulates particle information. The high-energy
physics models merely determine the outcome of
particle interaction with matter on a per particle
basis. Sorting the numerous common blocks in
fixed and variable variables would take an enormous
effort and was thought to be unnecessary for
distributed memory multitasking. For shared
memory multitasking it is essential to allow parallel
tracking of individual particles. As we intended to
apply the code mainly on distributed memory multi-
processor platforms, we made the decision to limit
multitasking in MCNPX to the distributed memory
capability via PVM.7

The piece missing to run MCNPX in the distributed
memory parallel mode is the initialization of the
high-energy models including the material
description of the physics models. It was found that
this initialization could be achieved solely from the

common MCNP4B storage in the daughter
processes after having received all the information
from the parent process.

C. Extending the History Tape Capability
Some of the particle transport information, like
isotope production/destruction, gas production,
etc., is gained from the MCNPX code high-energy
physics model regime by post-processing a history
tape, which contains the events of nuclear reaction
outcomes.

Similar to writing a surface source file, the history
records are written on a scratch unit by the
daughter processes and transferred to the parent
upon finishing a subtask. The parent finally writes
the master history file.

Fortran compiled codes on LINUX platforms suffer
from a file size limit of 2 Gigabyte. With current
computers, this is a real limitation, especially as we
envision large scale computing with the multitasking
capability. Already the predecessor of MCNPX, the
LAHET code, allowed extending this limit by writing
continuation files. This capability was revived for the
MCNPX code, not only for the parent's history tape,
but also for the daughters writing their scratch units.

D. Extending the Meshtally Feature
The meshtally is a new feature of the MCNPX code
and as such is not only completely decoupled from
the general tally management, but also from the
input processing. Only the storage is kept under the
MCNP management. The tally arrays were
extended to allow for multitasking, and coding has
been added to initialize the meshtally feature on the
daughter processes, and to transfer the tally
subtask results from the daughter to the master
process.

E. Isotope Production Tally
Generating isotope production rates for activation
analyses is a frequent task to be performed by
MCNPX in the design of nuclear and/or accelerator
facilities. Writing and post-processing a history file
as described in section C was found to be a real
bottleneck to accomplish this task, especially
because the post-processing has to be performed
with a serial code. It seemed natural to sample for
the isotope production online in MCNPX with the
benefit avoiding storage requirements of huge
history files and the long post-processing step. An
additional benefit is that the user now can run as
long as necessary to produce results with

statistical errors not dependent on file size limits of
history files.

The isotope production tally is invoked by a single
keyword followed by the cell numbers of cells to be
investigated. If no cell number is provided, the code
performs the analysis for all material cells in the
problem.

For large problems, the limiting factor of the isotope
production tally might be the memory required for
sampling. Therefore one is directed to get as
accurate an estimate of the storage requirement for
each cell as possible. For setting up the storage,
MCNPX determines the maximum mass and charge
numbers for each cell from the material description.
It then screens the "gamma-library" PHTLIB for the
number of possible isotopes, groundstates, as well
as isomeric states, below this maximum mass and
charge also considering the added projectile mass
and charge. A contingency is provided for produced
isotopes that may be generated by the physics
reaction models, but are not listed in the PHTLIB.

III. TESTING
The program development was performed on two
platforms: the IBM/AIX4.2 in IBM/RS6K
workstations and on Intel-Redhat LINUX 6.2,
applying the IBM XL-Fortran/C and the Portland
Group standard Fortran PGF77/GnuCC compilers,
respectively. Both platforms provide decent
debugging tools, which was of great advantage in
tracing down programming errors. The choice of
platforms was directed by the availability of
IBM/SP2 and Intel-Beowulf LINUX clusters.
Surprisingly, the MCNPX executables created with
the IBM/AIX-f77 and LINUX-pgf77 compilers produce
identical results.

It is MCNP quality assurance philosophy to be able
to obtain reproducible results in two successive
calculations performed with the same executable
and with the same input files. This philosophy is
also extended to multitasking meaning that a serial
and a multitasking run have to give exactly the
same results. This concept was the QA guideline
for the implementation task.

Simple test cases were continuously run and
compared against output produced by the original

serial codes in order to monitor the stages of
program development to accomplish this task.
Deviations from the nominal output were easily
picked up and resolved by code corrections. Further
alpha test runs were performed with large-scale
SNS problems to check reliability, performance and
matching of serial and multitasking results. After
finishing the test positive, the codes were released
for production runs.

A valuable tool was found to be the XPVM8 tool,
which is a real time performance monitor for PVM
applications, as well as a PVM debugger provided
by the authors of PVM. This tool writes a file of all
the PVM activities that can be assessed manually
and converted to charts of the runtime performance,
the processor utilization and the message queue.
The XPVM tool takes a long time analyzing a PVM-
activity file scaling with the size of this file. For this
reason, only problems with a small number of
source particles were investigated.

Examples of runtime performance are presented in
Fig. 1 for a test problem of 200 source protons of 1-
GeV energy impinging on lead sphere in water
environment. Results for the serial run, for 2-, 4-,
and 8- processor multitasking runs are compared.
And in detail discussed to demonstrate the program
flow. The colors of the plots mean:

Green color indicates an active process
performing user activities,
Yellow color shows periods when a
process performs only PVM tasks,
White color shows the process in waiting
stage,
Black means that the colors are not resolved
on the time scale because the process
periodically flips from green to yellow and,
Red lines indicate messages passed from
one process to the other.

In principle PVM can establish and manage multiple
distributed memory processes on a single
processor, which practically does not make many
sense as only one process can be active at a time.
It is assumed further that a daughter process is
served by a separate processor.

MI MI

MI

MI

DI

DI

DI

ST1

ST1

ST1

ST2

ST2

ST2

ST3

ST3

ST3

ST4

ST4

ST4

Fig. 1: Runtime Chart generated with XPVM for a 200 source particle problem run serial and with a
different number of tasks with MCNPX. The phases of the multitasking runs are indicated with
master initialization (MI), daughter initialization (MI), and subtask 1-4 (ST1-ST4).

In the nine-processor runtime graph, computer
names appear twice for different processes because
the computers are dual processor machines.

All the cases were run on the Beowulf cluster Argos
of the SNS Experimental Facilities Division of Oak
Ridge National Laboratory. All runtime charts are on
the same time scale. This means that in this case
not much time is gained by performing the problem
in the multitasking mode. This is not typical, but an
artifact of the small number of source particles
tracked.

For all multitasking runs the master process needs
some time to set up the problem reading and
interpreting the input before it spawns the daughter
processes. The time period it needs depends on
how fast it reads the input data from the hard disk.
Because of other activities on the machine that runs
the master process it took the five-processor run a
little longer than the others.

After spawning, the master broadcasts data arrays
to the daughter nodes needed for their initialization.
The length of this process depends on the available
network bandwidth causing differences in the length
of the initialization phase of the daughter
processes.

After the master received the message ready to go
from all daughter processes, it launches the
subtasks, here 50 particles per subtask, requesting
50/(number of daughter processes) from each
processor at for the first subtask. For routine
calculations the first subtask is very short, at
maximum 200 source particles long, just as much
as is needed to check if all daughter processes are
performing well.

For the following subtasks the master splits the
subtask size into (number of daughter processes) x
(5 to 27) so called microtasks. One microtask is

submitted to a daughter process at a time, which
will receive another microtask upon request from the
master until all microtasks are preformed. Needless
to say that the master manages the distribution.
The master also tracks how many microtasks each
process performed and increases the average
microtasks per process from 5 to maximal 27 in
case of imbalance. This enables the master to
respond to changes in the machine loads
minimizing waiting times from unfinished
processes. If one process doesn’t respond for a
long time, the master will not serve it and will
redistribute the lost microtasks to the other
available processes.

At the end of each subtask the daughter processes
send the results back to the master, which updates
its summary and tally arrays subsequently. Upon
finishing all subtask the master performs the
statistical analysis of the tally information and
finishes the run with the printout.

As our test cases use only a small subset of the
MCNPX capabilities, later on rigorous checks were
performed employing the complete test case suits
provided with the MCNPX package (34 test
problems for MCNPX_2.1.5, and 42 test problems
for MCNPX_2.2.3). In three test problems, tracking
changes were identified, meaning that the basic
summary tables show differences comparing serial
versus multitasking runs. In four additional
problems, differences in tallies were noted, besides
numerous differences in tally fluctuation charts and
other peripheral output. These test reveal that some
work is waiting to resolve all these issues.

IV. PERFORMANCE
A large test problem was performed on the LINUX
Beowulf cluster Argos to investigate the
performance of the multitasking mode of MNCPX.

As test problem served the SNS target station
model requesting information about the neutron
leakage distributions from the moderators located
on the top and the bottom of the flat mercury target
due to 1GeV protons. The model consists of over
300 cells, 6 sets of point detectors, and 4 sets of
surface current tallies. The serial run of the problem
consumed about 6200 minutes of cpu time for
1,000,000 source protons. The problem was run

serial and in the multitasking mode on 2, 4, 8, and
16 processors. The wall clock times of the runs
were monitored and evaluated.

This test problem used the default subtasking
scheme, starting with a size of 200 particles for the
first subtask, followed by a size of 1000 particles up
to 20,000 particles, by a size of 2000 particles up to
40,000 particles, by a size of 4000 particles up to
80,000 … ending with a size of 64,000 particles up
to 1,000,000 source particles. This scheme involves
many rendezvous of master and daughter
processes.

Figure 2 presents the scaling behavior of the runs
involving different numbers of processors in terms of
the numbers of source particles calculated per
minute (throughput). The theoretical curve assumes
a linear increase of the throughput with the number
of processors. In practice the throughput, calculated
the (number of calculated source particles/wall
clock time) is lower because the master process
never contributes in particle tracking, and PVM
overhead time and processor waiting times sum up.
The processor efficiency, plotted in Fig.3, is
calculated as the ratio of practical and theoretical
throughput. It is obvious that the processor
efficiency is especially low for the minimum
processor multitasking case with 64%, and rises as
processors are added to the run, because the
overhead time from the master processor is then
distributed through more processors.

Also of interest is to compare the results not adding
the master process to the timing. This gives an
indication about the penalty paid by the PVM
message passing and waiting times. Figure 4
presents the throughput plotted versus the
productive processors showing almost a lineup of
theoretical and practical curves. The efficiency of
the productive processors does in no considered
case drop below the 90%.

It would be of interest to extend these performance
curves to higher numbers of processors. Also of
interest would be to study how the performance can
be improved by reducing the numbers of subtasks.
Now, since the multitasking MCNPX has been
made available to the neutronics group of the SNS
Project, the computer cluster is very loaded, and it
is almost impossible to perform such studies.

Fig. 2: Average calculational speed of a large-
scale problem run with MCNPX in serial and
multitasking mode with different numbers of
processors.

Fig. 3: Average processor efficiency of a large-
scale problem run with MCNPX in serial and
multitasking mode involving a different
number of processors.

Fig. 4: Calculational speed of the daughter
nodes for a large scale problem run with

MCNPX in serial and multitasking mode with
different numbers of processors.

Fig. 5: Efficiency of the daughter processors
for a large scale problem run with MCNPX in
serial and multitasking mode involving a
different numbers of processors.

V. CONCLUSION
After closing some gaps in the MNCPX code
considering the applicability of the code to run on
distributed memory parallel computers under PVM,
performance tests have proven that significant
speedups can be achieved in transport calculations
on a Beowulf-type computer cluster. Some work
remains to be completed to close the coding gaps
for shared memory systems, and to clean up
inconsistencies in some of the test problems
distributed with the MCNPX package.

VI. ACKNOWLEDGMENT
This work was supported by the U.S. Department of
Energy through the Spallation Neutron Source
(SNS) Project.

SNS is managed by UT-Battelle, LLC, under
contract DE-AC05-00OR22725 for the U.S.
Department of Energy.

VII. REFERENCES
1. H. G. Hughes et. al., “MCNPX for Neutron-Proton
Transport,” International Conference on
Mathematics & Computation, Reactor Physics &
Environmental Analysis in Nuclear Applications,

American Nuclear Society, Madrid, Spain,
September 27-30, 1999.

2. R. E. Prael, H. Lichtenstein, “User Guide to LCS:
The LAHET Code System,” Los Alamos National
Laboratory, LA-UR-89-3014 (1989).

3. J. F. Briesmeister, “MCNP- A general Monte
Carlo n-particle transport code, Version 4B,” Los
Alamos National Laboratory, LA-12625-M (1997).

4. G. W. McKinney, “A Practical Guide tu Using
MCNP with PVM,” Trans. Am. Nucl. Soc., 72, 397
(1994).

5. R. L. Kustom, “An overview of the Spallation
Neutron Source Project,” Proceedings of the XX
International Linac Conference, Monterey (2000).

6. J. F. Briesmeister, “MCNP- A general Monte
Carlo n-particle transport code, Version 4C,” Los
Alamos National Laboratory, LA-13709-M (2000).

7. A. Geist et. al., “PVM3 User Guide and
Reference Manual,” ORNL/TM-12187, Oak Ridge
National Laboratory (1994).

8. J. A. Kohl, G. A. Geist, “XPVM 1.0 Users Guide,”
ORNL/TM-12981, Oak Ridge National Laboratory
(1996).

