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Abstract— We describe a scheme for building terrain maps of
realistic outdoor environments by having multiple robotic agents
navigate in them. The terrain map combines vision-based depth
information of environmental features with an elevation gradi-
ent created by fusing vertical displacements obtained from incli-
nometer pitch angles with DGPS altitude data. Experimental
results are presented to illustrate the practical application of this
scheme.
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I. Introduction

HERE has always been interest in schemes for

providing terrain maps to teams of robotic agents
engaged in applications which require autonomous
navigation. To be useful for applications like path-
planning in realistic outdoor environments (which is
our primary motivation), these maps should provide
information about the location of objects/features in
the environment and what the elevation gradient is
across the area. Once the terrain map is known, paths
may then be planned which are optimal in terms of
the distance between origin and goal locations or the
amount of energy expended, etc.

Our approach to outdoor multirobot terrain map-
ping is based on merging multiple local maps obtained
by each member of the robot team during specific mo-
tion segments into a globally consistent metric map.
The local maps combine the elevation gradient and
vision-based depth (i.e., ranges) to environmental fea-
tures. FEach local map is obtained while the robots
traverse the terrain of interest.
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Many researchers have studied the problem of map-
ping using robots. Thrun proposes a probabilistic al-
gorithm for concurrent mapping and localization using
a sample-based Monte Carlo Localization approach [1]
and extends it to both multiple robots and 3D mapping
of indoor environments [2]. The algorithm was imple-
mented on a robot equipped with two laser rangefind-
ers and a panoramic camera. A similar methodology
for building metric maps through cooperation between
multiple mobile robots has been adopted by Tercero et
al. [3].

On the cooperative mapping front, Burgard et al.
detail an explicit coordination mechanism that assigns
appropriate target points to the robots in a team such
that they effectively explore different regions [4] us-
ing an occupancy grid map that is built based on
the data sensed by individual robots. Furthermore,
a dead-reckoning-free robust positioning system for
global mapping using multiple mobile robots is de-
scribed by Dudek et. al in [5] by having the robots
define a local coordinate system without reference to
environmental features. In this robot-based represen-
tation, sensing errors remain localized to the individual
robot. Inter-robot positions are determined by metric
information but the resulting global map describes the
neighbor relations between the robots in the form of
a graph. Rekleitis et. al [6] report a graph-based ex-
ploration strategy for map construction in which two
RWI B12 robots act in concert to reduce odometry
errors. Each robot is equipped with a robot tracker
sensor which tracks a geometric target installed on the
other robot visually. In this scheme, the distance from
one robot to the other is inferred from the height of
the stripe pattern in the image.

Cooperative localization and occupancy-grid map-
ping of two homogeneous indoor robots each equipped
with a stereo-vision head is described by Jennings et
al. [7] and Little et al. [8]. Although grid-based maps
have the advantage of allowing explicit modeling of
free-space and ease of fusing data from different sen-
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sors, they are often impractical for large unstructured
environments due to the fixed grid-size and the ac-
companying computational burden. Additionally, false
alarms and data association ambiguities are difficult to
incorporate.

Howard et al. describe a cooperative localization
and mapping (CLAM) [9] scheme in which two robots
coordinate to reduce odometric uncertainty during un-
known indoor environment exploration. Each robot is
equipped with a color camera so that they ‘recognize’
each other using colored tags around their base. A
disadvantage of the proposed approach is that at any
given instant, only one robot of the team is allowed to
move. In this way, the stationary robot estimates its
own position with increased certainty than possible by
odometry alone. This tends to limit both the speed and
the accuracy of the maps that are constructed. An-
other disadvantage is that both the proposed coopera-
tive localization and mapping approaches are central-
ized as opposed to the distributed approach we have
adopted.

Huber and Hebert [10] consider three-dimensional
mapping of large, unstructured terrain using terres-
trial range sensors. Meshes are created from two range
sensors - one ground-based and the other aerial. The
aerial sensor is quite sophisticated in that it is capable
of producing 360° x 36° field of view (FOV) range and
reflectance images within a radius of 52 meters. Some
issues associated with range mapping based on terres-
trial sensors (for instance, lack of features, unknown
transforms, etc.) are accounted for in the algorithm
proposed therein.

In this work, a coordinate frame centered at the lo-
cation of the DGPS base station is fixed to the envi-
ronment of interest. This ensures that problems as-
sociated with combining locally generated maps are
minimized. Furthermore, the scheme we present has
no restriction on how many robots can move at any
instant. Also, the sensors required are not unduly so-
phisticated. Mapping is decentralized and takes place
in a realistic outdoor environment.

The organization of this paper is as follows: Section
IT gives an overview of the experimental setup and the
robots used as mapping agents. The actual terrain
mapping procedure is detailed in Section III followed
by experimental results and concluding remarks in Sec-
tions IV and V respectively.

II. Mapping agents and experimental
setup

The robotic agents used in the mapping task are
a team of Real World Interface (RWI) All TerRain
Vehicles (ATRV-minis) depicted in Figure 1. Each
robot possesses the full range of sensors utilized in the
mapping task as follows:

Camera

yaw V/

'RadioLAN
antenna; .

:Compass’.
inclinometer

Fig. 1.

A member of the ATRV-mini mapping team.

(i) Camera: A pan-tilt-zoom (PTZ) capable CCD
camera with focal length in the range 5.4 —
64.8 mm (i.e. a variable zoom system). Its pixel
resolution is 120 x 160 with a 37° FOV.

(i) LADGPS: An Ashtech-Magellan G12 GPS re-

ceiver/antenna which allows differential correc-

tions to be received from a base station in the
local area. Therefore, each vehicle in the team
is part of a Local Area DGPS (LADGPS) sys-
tem. Typical accuracies for this setup are in the

10 — 15 ¢m range with up to 10 satellites in view.

Magnetic compass: The magnetic compass

provides an external means of measuring the yaw

angle 1. It is calibrated and corrected for mag-
netic variation in the Northern hemisphere.

Inclinometers: These provide measurements of

the body pitch and roll angles, § and ¢ respec-

tively.

(v) Encoders: The internal encoders provide mea-
surements of the vehicle (z,y) positions and
the respective translational velocities along those
axes. Measurements of the heading (yaw) angle
1 and the angular rate are also provided.

Each robot in the team is essentially a node on a wire-
less LAN set up directly outdoors on the field (as shown
in Figure 2) with a unique network identifier for each
robot.

RWT’s mobility interface provides a transparent plat-
form for querying/correcting the sensors on each robot,
providing control/command signals and for inter-robot
message passing. The essential capabilities of each sen-
sor are encapsulated in a software server which is se-
lectively loaded as desired.

While encoder readings are subject to drift during
general motion, an Extended Kalman Filter (EKF)
based decentralized localization scheme (described in
a companion paper [11]) serves to correct these errors
in an incremental manner. Some of the motion param-
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Fig. 2. The experimental setup.

eters to be used in depth range determination are also
provided by the EKF-based scheme.

III. The terrain mapping algorithm

Incremental terrain mapping takes place via four
main processes. An incremental dense depth-from-
camera-motion algorithm (which is an adaptation of
the work reported in [12]) is used to obtain the depth
to various features in the environment. The relative
pose of the robots at these locations are associated with
particular depth information. An elevation gradient of
the terrain is determined by fusing GPS altitude infor-
mation and vertical displacements obtained from incli-
nometer pitch angles. The depth and elevation infor-
mation are then registered with their associated covari-
ances. The terrain map is updated to incorporate the
registered values at their proper coordinates. The co-
variances associated with each measurement provides
the confidence the algorithm has in that measurement.
In the case of overlapping areas, this confidence deter-
mines whether or not the map is updated. The overall
schematic diagram of the algorithm is shown in Figure
3. Details about the implementation of each block are
presented next.

A. Depth range determination

The depth of environmental features are determined
from the optical flow between frames during small
(known) camera motion. Assume a right handed co-
ordinate system for the camera as shown in Figure 4.
Two simple homogeneous transformations are required
to go from the robot coordinate frame (as depicted in
Figure 1) to the camera coordinates. This transforma-
tion from camera to robot can be represented as

H:[X.Y.Z 1] — XY Zz1]"

where

Y
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- Frame . w
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Fig. 4. Camera model and coordinates.

and r is the position vector of the camera center rela-
tive to the robot center of gravity while R.. € SO(3)
are rotation matrices about the indicated axes.

In the camera frame, each point in a scene has an
associated position vector P = (X,,Y,, Z.)T. This is
projected onto p = (x,y)” in the image plane using
the perspective projection:

fXe fYe
€r = =
7.’ YT 7.

where f is the focal length of the projection and the
point is located at a depth Z. from the camera center.
The image coordinate system is assumed centered at a
center of projection corresponding to the frame center.
On this basis, a simple camera model originally due to
Sobel [13] is used to obtain the transformation from
(z,y) in the image plane to actual pixel row and col-
umn. Define T = (T, T,,T:)" and Q = (w, wy,w,)”
as the translational and angular velocities of the point
due to camera motion. Then the image velocity V(z, y)
is given by :

V(z,y) = dz,y)F(z,y)T+G(=z,y)2 (1)
where d(z,y) = ZLC is the inverse depth (or disparity)
and

-f 0 =z ]
F(z,y) =
(z,9) [ 0 —f v
G(I,y) = -i} 2 _ﬂfg .

The motion parameters T' and © in (1) are either esti-
mated from the EKF-based scheme described in [11] or
numerically computed from sensor data. In particular,
the angular velocities are obtained from the angular
rates about each axis by using the kinematic relation

Wy 1 singtanf cos¢tanf - ¢
wy | =10 cos ¢ —sing 6

g ) .
ws 0 Gsb cosd b
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Fig. 3. The overall terrain mapping scheme.

Therefore, the only unknowns are the inverse depth
d(z,y) and the image velocity V(z,y). For small mo-
tions between frames, V(z,y) corresponds to the so-
called optical flow. Thus, computing the optical flow
for each pixel in the image frame provides a way to
estimate dense depth from camera motion. The op-
tical flow between two successive frames f; and fs
(and associated variances) are obtained by a sum of
squared difference (SSD) correlation-based algorithm
as sketched in Figure 5:

Using cubic interpolation, magnify the image by a factor of 4
FOR each interpolated 5 x 5 sub-pixel window
FOR hypothesized flows §; C max. flow
shift each pixel in fo by —¢;
compute SSD correlation between f; and f in a spiral pattern

IF the correlation at a pixel is the minimum so far obtained
note hypothesized flows and current min. correlation values

END
END

END

Fig. 5. Optical flow computation.

The reason for magnifying the image in step 1 is to
obtain sub-pixel accuracy. This algorithm runs until
the entire frame has been processed. The variance as-
sociated with the optical flow is determined by fitting
the flow corresponding to the smallest SSD and its two

nearest neighbors to a parabola. Then the variance is
292 where a is the coefficient of the quadratic term in
the parabola and o, is the uncertainty in pixel posi-
tion [12]. Raw disparity is computed from (1) while
the predicted disparity and variance are computed as

d(z,y) = (HTP,'H) ' HTP,'Ax
of = (H'P'H)
respectively. P,, is the covariance matrix obtained

from the optical flow computation and
AX:V(:E,y)—G(LE,y)Q, H:F(:an)T

The predicted and raw disparities are fused using
a Kalman filter, after which the pixel disparity is up-
dated. To compose the update equations, let p?' , Pr
denote the updated and predicted covariances at the
instant t, the covariance update equation and the
Kalman filter gain K are respectively given by:

+ _ Dpog

Py = —— 5
py +0y
+

K = P
Oq .

The disparity at each pixel is then updated as
@ = @ +K(d-q)

where ¢, and ¢; are the updated and predicted dis-
parities, respectively.
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B. Obtaining an elevation gradient

Initially, a coordinate frame is fixed local to the area
of interest (but global from the viewpoint of the mem-
bers of the robot team). In this way, we ensure that
all pose measurements are referenced to the same co-
ordinate system. The 3D pose of the robot at the start
location is registered, then the vision-based depth de-
termination algorithm executes. The robot advances
to a location near the closest object as inferred from
the determined depth. GPS readings are used to deter-
mine vertical displacement of the robot between these
two locations. This is fused with a vertical displace-
ment measure h based on the inclinometer pitch an-
gles and computed as: h = Ltanf where L is the
offset between the robot center of gravity and the cam-
era’s optical center. The number of satellites acquired
by the GPS is used as a measure to determine what
confidence the algorithm should have in the vertical
displacements provided by the GPS. The vertical dis-
placements are monitored between two positions, say
P, and P, as in Figure 6 to give an elevation profile
for that motion segment corresponding to the depth
map obtained. These depth and elevation information
are registered to a local map which essentially encap-
sulates the terrain information within the robot’s FOV
between the two locations (see Sub-section III-C). At
P;, the robot turns away from objects inferred from the
depth map, the object locations are marked, then new
depth information is obtained. The robot advances to
a point Ps, then creates a local map connecting P> and
Ps5 containing depth and elevation information. This
process continues with each robot updating the global
map as information significantly different from what is
already registered on that map becomes available. The
map making is incremental in the sense that the terrain
is effectively partitioned into segments corresponding
to location of inferred objects.

* field of
view

Robot 2

P v Robot 1
Global <
frame

Fig. 6. Obtaining an elevation gradient.

Robot 3

C. Elevation-depth registration

Registration of depth and elevation is simplified be-
cause a) there is a global coordinate frame in which all
measurements are expressed; b) all the information to
be fused are available in metric (rather than topologi-
cal) form; c) the manner in which exploration is carried
out implicitly takes depth information into account.

The registration is done after each robot traverses
the region between two points, (say, P; and P, in Fig-
ure 6). On each robot, position coordinates ((X,Y)
in global frame) within the immediate FOV of the
robot are matched with vertical displacements. Gaps
are filled in by cubic interpolation so that when the
robot arrives at P», a 3D map of a subset of the region
it just departed is created. Since the robot advances
up to points where the depth map indicates that ‘in-
teresting’ features are present, the location of these
features as marked on the map would correspond to
the terminal point of the motion segment. So, depth
registration simply consists of marking the (X,Y") co-
ordinates of these points in the local map of that mo-
tion segment. The bearing information is calculated
from the camera’s angle of view and number of pixels
per frame. (If we ignore the effects of lens distortion,
1 pixel of lateral displacement about the camera’s Z,
axis approximately equals 0.25° in the present case).

D. Updating the terrain map

The local maps generated by each of the mapping
robots are combined into a global map based on the
XY Z coordinate frame. For previously unmapped re-
gions, the global map is updated as soon as the regis-
tration step is completed. In principle, the variances
associated with the depth determination and the num-
ber of sensed GPS satellites may be utilized as confi-
dence measures when the same region is traversed more
than once. The global map update then depends on
these confidence measures. However, this portion of
the algorithm is still to be fully implemented. There-
fore, the experimental results we report are based only
on the one-pass update. The resulting map is itself a
metric map available to path-planning algorithm in the
form of a matrix from which a 3D surface is generated.

IV. Experimental results and discus-
sions

Our experiments show results obtained using two
robots (Augustus and Theodosius) in an outdoor envi-
ronment. The robots move slowly around the environ-
ment such that the average inter-frame displacement
is no more than 2cm .

The scenery within the robot Augustus’ FOV dur-
ing this particular motion segment is shown in Figure
7(a). The prominent object in this scenery is a tree
behind which is a building. The filtered depth map
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recovered for every pixel is shown in Figure 7(b). In
this case, the lighter the area, the closer it is to the
robot. Figure 7(c) shows the greyscale rendering of
the state covariance after the last frame is processed.
Here, the darker zones represent areas with lower co-
variances (i.e. more reliable depth estimates). Observe
that high uncertainties (bright zones) are associated
with the depth estimates for the building in the back-
ground and the skyline around the tree. Therefore, the
3D rendering of depth data depicted in Figure 7(d)
should be interpreted in light of the aforementioned
covariance image. Depth ranges to the tree’s position
and a slightly raised pavement behind it are more re-
liable than estimates to the building. We expect that
the reliability of these estimates will improve as the
robot gets closer to the features in question, but this
has not been pursued further since our interest lies pri-
marily in indicating areas where objects are present so
that paths can be planned around them. Thus, using
the mapping scheme we have described, the next mo-
tion segment for this robot starts on the other side of
the tree - which is located about 10 m from the robot.
Its orientation relative to the robot is obtained from
the lateral pixel displacement relative to the center of
the image frame.

Figure 8(a) shows the scenery within the FOV of
Theodosius. The prominent features here are several
culvert covers with a tree branch just over-hanging
them. The recovered depth map is depicted in Fig-
ure 8(b) while the covariance rendering is shown in
Figure 8(c). Observe that the depth estimates for the
skyline and distant scenery have higher uncertainties
associated with them. Also, Figure 8(c) suggests that
there is more uncertainty in the estimate provided by
Theodosius as compared with Augustus. This may
be related to the level of scene complexity and actual
ranges to the objects in the robot’s FOV. Dense depth
data are shown in Figure 8(d) for this case.

Both the elevation profile for the motion segments
and the feature locations are mapped as shown in the
partially updated terrain map (Figure 9). Although
this update is still done offline for now, it shows the el-
evation profile across the area traversed by each robot
(in the locally fixed coordinate frame centered at the
LADGPS base station location) and prominent fea-
tures within the robot’s FOV during the motion seg-
ment are marked on the map. In reality, this terrain
map is available to a path-planning algorithm as a ter-
rain matriz in which the row and column indices cor-
respond to X and Y positions while the actual matrix
entry is the vertical displacement across the terrain
(AZ). The path-planning routine utilizes the con-
tents of this matrix to determine terrain properties
like traversability and such like. Areas with prominent
features would have entries several orders of magni-

tude higher than the neighboring displacement entries
which would serve to flag them as areas to be avoided.
Portions of the terrain still unexplored by the robots
contain no elevation information at this instant. Once
markers are placed at the approximate locations of the
environmental features, exploration then continues on
the other side of these markers (this is illustrated in
the area explored by the robot theodosius in Figure
9).

V. Conclusions and further research

We have presented a scheme for multirobot outdoor
terrain mapping which combines vision-based depth es-
timates with an elevation profile. The elevation pro-
file is obtained by fusing vertical displacements from
DGPS with those computed from inclinometer pitch
angles while the robots traverse the terrain of interest.
Experimental results have been presented to illustrate
the application of this scheme to a terrain mapping
problem which is partly motivated by path-planning
requirements.

There are several ways to extend this work. The
most obvious is to have explicit cooperation among
the robots in the team, especially when identical or
overlapping areas have been explored. Considering the
fact that mapping based on depth-from-motion algo-
rithms may be hard to apply in rough terrains, robots
equipped with laser range-finders may be used in order
to improve the bearing accuracy of features located in
the environment. In this case, we would have a het-
erogeneous robot team and depth estimation can be
done with greater accuracy by comparing vision-based
and laser-based ranges. From a computational stand-
point, it is probably sufficient to employ a feature-
based (rather than iconic) depth estimation scheme
since it is not usually necessary to mark the ranges
to the entire FOV on the elevation profile. For this
to be useful, it would be necessary to detect features
of interest so that the algorithm tracks these rather
than every pixel in the frame. Even for that kind of
scenario, a vision-based scheme may not necessarily be
the best approach for extremely rough and/or highly
undulating terrains. It should be noted, however, that
using a different scheme for depth range determination
does not fundamentally change the mapping algorithm
itself.

The kind of off-line map update shown in the ex-
periments would typically suffice for path-planning
in static or slowly-changing environments. Schemes
to update the maps online in dynamic environments
would be a significant extension to this work. Ulti-
mately, we would like to combine the terrain mapping
scheme presented here with the multirobot localiza-
tion algorithms in the companion paper [11] so that
robust cooperative localization and mapping (CLAM)
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becomes possible.

(c) Augustus: depth covariance
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(d) Augustus: actual depth data

Fig. 7. Experimental results for the robot Augustus.

This work obviously represents a

first effort - several of the issues raised above remain
the subject of continuing research.
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Fig. 8. Experimental results for the robot Theodosius.
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Fig. 9. Partially updated terrain map. The flat portion represents areas that the robots have yet to explore. For the area explored

by theodosius, the markers represent the location of a pair of culvert covers in its FOV. The tree which

features prominently in

the area explored by augustus is so marked. For our purposes, these positions are available to path-planners as coordinates of a

terrain matrix whose entries are much greater than surrounding entries.



