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Abstract— An Extended Kalman Filter-based algorithm for the
localization of a team of robots is described in this paper. The dis-
tributed EKF localization scheme is straightforward in that the in-
dividual robots maintain a pose estimate using EKFs that are local
to every robot. We then show how these results can be extended
to perform heterogeneous cooperative localization in the absence or
degradation of absolute sensors aboard the team members. The pro-
posed algorithms are implemented using field data obtained from a
team of ATRV-Mini robots traversing on uneven outdoor terrain.
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I. Introduction

HE development of unmanned mobile robotic systems

that operate in complex and highly dynamic environ-
ments has received tremendous interest from roboticists in
recent years. In the last decade or so, the notion of having
a team of robots cooperating to achieve a goal has gained
due attention since there are several advantages in having
a group of robots cooperate to complete a required task
in various application domains [1],[2]. Understandably, the
reliability of such a system is much higher than single-robot
systems, enabling the team to accomplish the intended mis-
sion goals even if one member of the team fails. However,
the realization of a multi-robot system is not without dif-
ficulties and involves a much higher order of complexity
when compared to single-robot systems.

Two types of architectures, centralized and decentralized,
can be employed to achieve cooperation in a robot team.
In a centralized architecture, all planning, execution con-
trol and monitoring tasks are performed by a single control
unit. It is considerably difficult to have a fully centralized
scheme for the control of multiple robots as the increase
in computational overhead is proportional to the number
of robots in the team. When there is no central process-
ing facility and all the decisional issues for a team member
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are tackled within the robot itself, the disadvantages asso-
ciated with the centralized architectures can be overcome.
This motivation has manifest itself into decentralized (and
distributed) architectures that render robust and modular
capabilities [3].

Localization, the process of determining the position and
orientation (pose) of a robot within the operating environ-
ment, is critical for subsequent high level navigation tasks.
Each member of the robot team considered in this paper
possesses absolute positioning capability by means of dif-
ferential GPS (DGPS). Multipathing' errors make it ex-
tremely difficult to localize based on DGPS alone. Thus
it becomes necessary to develop a framework within which
observations from dead-reckoning and absolute sensors can
be fused to continually deliver reliable and consistent pose
estimates. Additionally, in order to minimize the compu-
tational bottlenecks associated with centralized architec-
tures for multi-robot localization, we seek to decentralize
the estimation process across the members of the group.
To achieve the above requirements, a distributed Extended
Kalman Filter-based algorithm for the localization of a
team of robots operating on outdoor terrain is developed
in this paper. In the first part of the paper, we show that
distributed localization of robot team members can be real-
ized in a straightforward manner by enabling each robot to
maintain its pose using an EKF that is local to that par-
ticular robot. The resulting pose estimates are intended
to aid the construction of an elevation map (described in
a companion paper [4]). We also consider the case when
all of the robots may not possess absolute positioning ca-
pabilities either due to the absence of requisite sensors or
due to the degradation of available sensors. We show in
such cases how multi-robot cooperative localization can be
achieved by exploiting heterogeneous sensors aboard the
team members.

This paper is organized as follows: Section II briefly re-
views previous cooperative navigation methodologies re-
ported in the literature. Section III describes the dis-
tributed localization scheme. Section IV develops heteroge-

IMultipathing refers to the situation where the signals detected by
the DGPS receiver have been reflected off surfaces prior to detection
instead of following the straight line path between the satellite and
the receiver.



neous cooperative localization approaches. Section V pro-
vides the conclusions and indicates avenues by which the
research proposed in this paper can be extended.

II. Related Work

Several robot-based cooperative navigation approaches
have been presented in the literature [5],[6],[7]. The under-
lying idea in such schemes is that one member of the team
uses another member of the team for realizing cooperative
navigation. The main limitations of such approaches are
that: 1) only one robot is allowed to move prior to the
movement of the other members of the team, 2) the robots
have to move in such a way that they can “see” each other,
which necessitates visual (sensorial) contact to be main-
tained at all times, and 3) the coordination abilities of the
team as a whole suffer as the tasks are carried out in groups.

Premvuti et. al describe a relative position localization
system for multiple mobile robots [5]. All the robots in
the team are equipped with a set of rotating laser bea-
cons and a circular sensor array of photodiodes. The laser
beam is projected onto the sensor array of the robots in
the vicinity and the signals detected by the photodiodes
are said to form a swept laser projection matrix pattern.
The range of the neighboring robot is determined by the
slope of the pattern and the location of the photodiode at
the center of the pattern provides the direction. Another
example of a robot-based strategy is the work by Bison et.
al [6] where one robot tracks another robot carrying a bea-
con that produces a helicoidal light pattern with a camera
and compares it to an a priori geometrical model to ex-
tract necessary information for pose estimation. Kurazume
et. al [7] propose a cooperative positioning system where
the cooperating robots are divided into two groups. One
of the groups remains stationary and acts as a landmark
while the other group moves. Then the landmark roles
and movement between the two groups alternate until the
goal position is reached. While there are some advantages
to such a method (elimination of a priori knowledge of
landmark locations, ability to determine three-dimensional
positions), the aforementioned disadvantages remain.

Collaborative multi-robot localization, within an estimation

theoretic framework, have been considered by many au-
thors. Fox et. al perform collaborative localization of two
indoor robots equipped with a model of the environment
using a sample-based version of the Monte Carlo Local-
ization (MCL) algorithm [8]. The main strength of MCL
is its ability to perform global localization. It is not clear
how well it will perform when extended to unstructured
domains and slippery terrain. Sanderson formulates the
cooperative navigation problem in a Kalman filter (KF)
framework [9]. In the proposed Cooperative Navigation
System (CNS), inter-robot positions are treated as obser-
vations and the KF estimates the position of all robots si-
multaneously. The CNS algorithm has been tested on two
Yamabico robots in an indoor environment equipped with
ultrasonic sensors by which one robot can sense the posi-
tion of the other robot. It is not clear whether a centralized
or a decentralized methodology is adapted for exchange of

sensing information and subsequent state estimate updates.
The shortcomings of this formulation are: 1) each robot is
assumed to move in prescribed trajectories, 2) the robots
are assumed to be holonomic, and 3) the models describing
robot motion are assumed to be linear.

Roumeliotis et. al present a KF-based distributed lo-
calization approach for cooperative localization [10]. A
centralized KF performs data fusion by using observations
from a group of mobile robots. Both proprioceptive (rel-
ative) and exteroceptive (absolute) sensors are employed.
The standard KF prediction equations are decentralized
and distributed among the robots in the team. It is argued
that the multi-robot localization problem renders the state
propagation equations of the centralized system to be de-
coupled with state coupling occurring only when relative
pose observations become available. Whenever two robots
meet, the relative pose information obtained from a camera
tracking system is used to centrally update the pose esti-
mates of the robot team members. The results are verified
on an indoor robot team.

From the brief review above, it is evident that current
cooperative robotic navigation research primarily concen-
trates on indoor environments. In outdoor environments,
errors introduced due to distance traveled can be signif-
icant and unpredictable. This is a direct consequence of
the undulatory nature of the terrain of travel and the un-
certainties introduced into sensor data. These challenges
make it comparatively difficult to realize successful navi-
gation in unstructured outdoor environments. Motivated
by these factors, this paper develops an EKF-based multi-
robot heterogeneous localization framework similar to that
developed by Roumeliotis et. al [10] but it differs from that
approach in the following ways: 1) the kinematic model of
the robots is nonlinear: A model that sufficiently captures
the vehicle motion is key to efficient use of sensor data and
is central to successful autonomous navigation. A nonholo-
nomic robot with a nonlinear kinematic model performs
significantly better as the model efficiently captures the
maneuvers of the robot. 2) no absolute positioning system
capable of providing relative pose information is assumed
to be available: Even though we consider DGPS, it pro-
vides absolute position information for only a single robot
(subject to the number of satellites in view at any given
time), and 3) the robots traverse on uneven and unstruc-
tured outdoor terrain: Our approach would work better as
we consider nonlinear kinematic models.

ITI. Distributed EKF Localization

The EKF employed for the localization of the robots re-
quires a kinematic (process) model and a sensor (obser-
vation) model. The experimental setup, the process and
observation models, the ensuing estimation cycle and the
corresponding experimental results are presented in the fol-
lowing paragraphs.

A. Experimental Setup and Sensor Calibration

The experimental platform is a team of two ATRV-
Mini wheeled mobile robots with 4-wheel differential-drive



skid-steering. The experimental setup consists of a wire-
less mini-LAN, a Local Area DGPS (LADGPS), a soft-
ware platform (mobility from RWI) and codes developed
in-house under Linux to read and log the data for the
sensors on each robot. The wireless LAN is setup out-
doors between an Operator Console Unit (OCU) and the
robots. The OCU consists of a rugged notebook equipped
with a BreezeCOM access point and antennas. Each robot
has a BreezeCOM station adapter and an antenna. The
LADGPS is formed by the base station/antenna hardware
connected to the OCU and remote stations/antennas di-
rectly mounted on each robot. Each robot’s station re-
ceives differential corrections from the base station such
that LADGPS accuracy of up to 10 centimeters is obtain-
able. The distributed CORBA-based interface offered by
mobility ensures that querying the sensor slots of partic-
ular robots is done in a transparent decentralized manner
by simply appending the robot’s ID to all such queries.

The sensor suite for localization (shown in Figure 1)
is comprised of encoders that measure the wheel speeds
and heading, DGPS, compass, a pan-tilt-zoom (PTZ) ca-
pable camera for visual perception and a scanning laser
rangefinder (not shown). Table I summarizes the sensor
suite and its characteristics.

Since the experiments are carried out in an outdoor envi-
ronment with the robots executing general motion (trans-
lation and rotation on all axes), sensor calibration is im-
portant to ensure accuracy of readings. For the encoder
readings, external sensors (DGPS and magnetic compass)
are used to obtain calibration factors corresponding to the
various axes. The correction factor for magnetic compass
is obtained by looking up geodesic charts to determine
the angle of magnetic variation corresponding to the longi-
tude/latitude of the experiment’s location. During outdoor
navigation, it is possible for the DGPS antenna to lose line
of sight with the orbiting satellites (e.g., by going under a
tree). To account for this, calibration trials were performed
in which the error in the DGPS positions reported were ob-
tained as a function of the number of satellites acquired.

B. ATRV-Mini Kinematic Model

In a 4-wheel differential-drive skid-steering configura-
tion, the two wheels on the same side move in unison,
with each pair on opposite sides capable of being driven
independently. If both pairs are driven forward with the
same speed, then the robot moves forward, but if they are
driven in opposite directions, the robot will turn in place.
For the ATRV-Mini, it is observed that the wheel pairs
on the same side may also be rotated at different speeds
thereby enabling the robot to make gradual turns as it tra-
verses. This flexibility allows compact maneuvers to be
effected, such as turning in place (i.e., executing a zero-
radius turn). Skid-steering is difficult to model [11] as a
skid-steering robot slips when it turns. It is our conclusion
from the field trials that a no-slip kinematic model using
encoder-based odometry in combination with external cor-
rections from an absolute sensor suffices for localization.

The nominal (noise-free) discrete process model equa-

tions at discrete time-instants k can be written as:

Ty Ty Vi cos ¢,
Yo, = Yup—1 + AT | Visin ¢Uk—1 (1)
¢Uk ¢Uk—1 Wk

where AT is the synchronous sampling interval between
states at discrete-time instants (k — 1) and k. The control
signals applied to the vehicle are uy, = [Vj,wy] where Vj is
the linear velocity and wy, is the heading rate of the robot
at time-instant k. The errors due to the control signals
V and w are modeled as simple additive noise sources, 6V
and dw, about their respective means V and @ as Vj, =
Vi +6Vi, and wyp = @ + dwg. The error source vector
is defined as: dwy = [6Vk,6wk]T and is a direct effect of
the associated modeling errors and uncertainty in control.
The source errors §V and dw are assumed to be zero-mean,
uncorrelated Gaussian sequences with constant variances
0%, and o2, respectively. The variances were determined
experimentally to reflect true noise variances.

C. Observation Models

The observation model for DGPS and compass are given

by:
1 0 0
zy, = Hix, +0f; Hi:[o 1 0];
zp = Hixp+op; Hp=[0 0 1];

where vf and v, respectively, refer to the uncertainty
present in DGPS and compass observations, and are mod-

eled as zero-mean uncorrelated Gaussian sequences with
2

T

. g .
constant variances, 029 and aic, respectively. The

y
variances for the DGPS riaported positions are set propor-
tional to the number of satellites in view.

D. Estimation Cycle

The predict-observe-validate-update estimation cycle of
the EKF for the localization of every robot team member
proceeds as below:

o State Prediction: The state prediction takes place ac-
cording to Equation (1) as follows:

x'u(k|k—1) mv(k—1|k—1)
y'U(k|k—1) yv(k—uk—l)
V(k|k—1) ¢U(k—1|k—1)
V. cos ¢U(k—1|k—1)

+ AT | Visindy,_y . (2)

Wk
The prediction covariance can now be computed using:

P(k\k—l) = foka(k—llk—l)sz:,k + Vi, Qka‘Z;k
where Vi, represents the Jacobian with respect to the
states, Vfy, is the Jacobian with respect to the error
sources and Qy, is the noise strength matrix given by:
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The ATRV-Mini sensor suite and experimental setup. The sensor suite shown in (a) consists of encoders, DGPS, a compass and a

PTZ camera (Also see Table I). The experimental setup depicted in (b) consists of an operator console unit, a DGPS base station and a base

station antenna. See text for further details.

TABLE I
SENSOR SUITE DESCRIPTION
|| Sensor | Type | Description | Freq. (Hz) ||

Odometry relative provides wheel speed and rate of change of heading ~ 50

DGPS absolute provides (z,y) position of robots S
Vision absolute | provides images using a pan-tilt-zoom (PTZ) capable camera ~ 10

Compass absolute provides heading with respect to true north ~
Laser rangefinder | absolute provides range and bearing to targets ~ 10

10 —ATVkSin¢v(kf1\k71)
vfx% — 0 1 ATVk coSs st(k_l\k—l)
00 1
C.Osd’v(kfuk—l) 0
vfwk = AT Slnd)v(k—llk—l)
0
2
_ oy, 0
Qe = [0 * af,k]

e Observation Validation: Once the predicted states
and their covariances are available, the DGPS/compass
observations that arrive are accepted only if the observa-
tion falls inside the normalized residual validation gate,
viS; vy < e, where vy is the residual defined as the
difference between the actual and predicted positions. The
value of €, can be chosen from the fact that the normal-
ized residual sequence is a x? random variable with m
degrees of freedom (m being the dimension of the obser-
vation) [12]. The residual covariance is given by: S; =
H P (1) H] + Ry

o Update: Once a validated observation is available, the
state estimate and covariance updates are performed using
the EKF update equations [12]:

X(klk—1) T Wi
Pe_1) — WiS Wy

X (klk)

Py =
where the Kalman gain matrix is given by

W, = Pup—nHiS,"

E. Experimental Results

Figures 2(a)-(d) show the estimated path, orientation,
pose standard deviations of the estimated pose and the
95% confidence (20) bounds for the DGPS residual, re-
spectively, for one of the robots of the team. The EKF-
based localization algorithm continually corrects the di-
verging dead-reckoning estimates based on external sens-
ing information provided by DGPS and compass correc-
tions as reflected by the periodic rise and fall of the pose
standard deviations in Figure 2(c). The decrease in the
standard deviations is due to the corrections offered by the
DGPS/compass and the increase is due to the vehicle be-
ing localized based on prediction (dead-reckoning) alone.
When the DGPS/compass do not provide aiding informa-
tion towards the localization of the vehicle, the standard
deviation is at a maximum. Due to the observation vali-
dation procedure, the residuals in (d) are clearly bounded
and are indicative of consistent estimates.

IV. Outdoor Cooperative Localization Ap-
proaches

When some robots of the team do not have absolute posi-
tioning capabilities or when the quality of the observations
from the absolute positioning sensors deteriorate, another
robot in the team (with better positioning capability) can
assist in the localization of the robots whose sensors have
deteriorated or failed. In such cases, if relative pose infor-
mation is obtained, the EKF-based localization algorithm
can be cast in a form such that the update stage of the EKF
utilizes this relative pose thereby providing reliable pose es-
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EKF estimated robot path is shown in (a), orientation in (b), the standard deviation of the pose in (c) and the residual with the

95% (20) confidence bounds in (d). In (a), the robot starts at (0,0) and the dots represent the DGPS observations. The odometric path is
plotted in (a) and the compass readings are plotted in (b) for comparison.

timates for all the members of the team. The observation
model and two approaches for cooperative localization are
detailed in the following paragraphs.

A. Observation Model for Heterogeneous
Cooperative Localization

Let us consider the case when the team is composed of
two robots. When robots #1 and #2 meet, they exchange
relative pose information and the observation model be-
comes:

L1y, — T2y
Zew = | Y1p — Y2, | T vi2, = HigyXe, + 012, (3)
Qslk - ¢2k

where vis refers to the uncertainty present in the relative
pose observation and is modeled as a zero-mean uncorre-
lated Gaussian sequence with covariance R, .

The residual and the residual covariance are:

Ve, = Zc

S =

Ck

= Zey, = Zgy, — H12k Xekr—1)

T
) ]:_]:12;c + R12k

k

H:» P

Clk|k—1

The Kalman gain matrix, the state estimate and covariance
updates (centralized) are as below:

T —1
WCk Pc(k|k—1)H12k SCk
Xerr Xekik-1) +W‘fk [ch - (Xl(k\k—l) o Xz(k\k—l))]
_ T
Peawy = Peguory = WaSa, We,

where xc,,_,, and P, , are the state and covariance

predictions, respectively.

B. Laser-based Cooperative Localization

Suppose that robot #2 has a scanning laser rangefinder
and also that the number of satellites in view from the
current position of this robot indicates that DGPS is un-
available. (In the field trial, this corresponded to the robot



going under a tree.) Given the pose of robot #1, relative
pose between robots #2 and #1 is determined as below:

1. Robot #2 identifies robot #1 and acquires a range and
bearing laser scan.

2. After necessary preprocessing to discard readings that
are greater than a predefined threshold, the range and bear-
ing to the minima identified in the laser profile of robot #1
are determined. An illustration of the identified minima
marked by a square (O) is shown in Figure 3.

3. From the range and bearing pertaining to the minima,
the pose of robot #2 is inferred and relative pose informa-
tion is now available for use in Equation (3).

Results: Within the EKF framework, state prediction
takes place as before on individual robots according to
Equation (2) in a decentralized and distributed fashion.
By exchanging relative pose information, the states of the
robots are updated in a centralized fashion as detailed in
Section IV-A. The results for the laser-based cooperative
localization are shown in Figure 4. Figure 4(a) shows the
estimated paths of robots #1 and #2. The pose standard
deviations of robot#2 in Figure 4(b) demonstrate the util-
ity of the relative pose information in accomplishing coop-
erative localization. At time = 21 seconds, DGPS becomes
unavailable as indicated by the rise in the = standard de-
viation. It can be seen that as a result of the laser-based
relative position information, there is a sharp decrease in
the position standard deviations of robot #2 (marked by
arrows). As the motion of the robot is primarily in the x
direction when the corrections are provided, the resulting
decrease in the x standard deviation is noticeable compared
to those in y and ¢.

Identified Minima

Range [m]

. . . 1 . . .
-2 -15 -1 -05 0 05 1 15 2
Bearing [rad]

Fig. 3. The square () denotes the identified
minima from a laser rangefinder scan.

C. Vision-based Cooperative Localization

In this approach, the PTZ camera that is part of the sen-
sor suite is used to provide relative position information.
Consider the case where two robots are performing cooper-
ative localization with the camera-equipped robot #1 lack-
ing in absolute positioning capability. Relative position in-
formation is obtained as follows: First, robot #1 searches
the vicinity for another robot (say, robot #2) whose pose
is known (this is determined via TCP/IP message pass-
ing). Robot #1 then visually acquires robot #2 using an

object recognition algorithm. The algorithm identifies the
centroid of the robot within the image frame using a color
segmentation scheme and marks its pixel coordinates on
that frame. Figures 5(a)-(d) show the marked coordinates
for various robot positions. An incremental depth-from-
motion algorithm (see [4] for more details) computes the
depth for a window within the frame which encloses these
coordinates. Depth (range) dj, is computed using [13]:

Az | d -f 0 =z i“
Age | = L0 —f ]
L "%k
zy _ z? i Tz

+ ;o (f + 7 ) Yy ”
f f Tzk

where (Azg, Ayi) is the optical flow between succes-
sive frames, (z,y) are pixel coordinates, the triplets
(tar>tysstz) and (rg, Ty, Tz, ) are translational and ro-
tational velocities, respectively, and f is the camera focal
length. The required relative position is inferred from the
computed depth and the bearing of robot #2 relative to
robot #1 is approximately determined from the lateral dis-
placement between the enclosed pixel coordinates and the
coordinates of the frame’s optical center. The robot states
are then updated as detailed in Section IV-A.

V. Conclusions and Further Research

A distributed EKF-based algorithm was described in this
paper for the localization of a team of robots operating in
uneven and unstructured environments. For cases where
all robots of the team may not have absolute positioning
capabilities, it was shown how cooperative localization can
be performed exploiting heterogeneous sensors aboard the
team members. The proposed scheme was successfully im-
plemented using real data obtained from field trials with
no modification to the operating environment nor to the
robots of the team.

Further areas of research include the incorporation of
slip within the kinematic model which will improve the
prediction stage of the EKF. An entropy-based informa-
tion metric developed in [14] can be used to evaluate the
information content of an observation before that observa-
tion is used for cooperative localization thereby enabling
the incorporation of observations that provide the maxi-
mum information towards localization. It is easy to utilize
this metric within the proposed estimation-theoretic frame-
work and such incorporation has already been proven to
be effective in outdoor autonomous navigation [14]. Ex-
tended Information filtering (EIF) [12], a variant of EKF,
has been widely touted in recent years as an antidote for
the problems associated with EKF schemes. For the cur-
rent application, the large matrix inversions necessitated
by the EIF make it unsuitable. The extension of the infor-
mation metric, the use of EIF and schemes for achieving
global cooperative localization and their online implemen-
tation remain to be further investigated.
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Fig. 4. Laser-based cooperative localization. The robots perform cooperative localization when DGPS becomes unavailable or when there

are not enough satellites in view. EKF estimated robot paths are shown in (a).

The solid line denotes the estimated path of robot #2

and the dotted line that of robot #1. The standard deviation of the pose of robot #2 is shown in (b). The external corrections offered by
the laser-based localization scheme are marked by arrows. (S1,E1) and (S2,E2) denote the start and end positions for robots #1 and #2,
respectively.
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