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The Advanced High-Temperature 
Reactor (AHTR) Is a Joint Activity 
of Oak Ridge National Laboratory 
and Sandia National Laboratories
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Advanced High-Temperature Reactor

Coated-Particle Fuel (Similar to HTGR)
Molten Salt Coolant
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The AHTR Combines Two Technologies 
To Produce High-Temperature Heat

• Coated-particle, graphite-matrix fuel
− Demonstrated temperature limit of ~1200ºC
− Same fuel technology planned for modular high-

temperature gas-cooled reactors

• Molten salt coolant (example: 2LiF-BeF2)
− Very low pressure (boils at ~1400ºC)
− Efficient heat transfer

• Similar to that of water
• Significantly higher reactor coolant exit temperatures for the 

same fuel temperature limits compared with helium 
− Coolant for proposed fusion energy plants
− Developed for Aircraft Nuclear Propulsion Program



Japanese High-Temperature Engineering Test 
Reactor Fuel for 950ºC Helium Exit Temperatures
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Molten Salt Coolants Allow Low-Pressure Operations at High 
Temperatures Compared with Traditional Reactor Coolants
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Fuel Element/Moderator Configurations Determine 
Fuel Coolant Temperature Differentials

Cooling channels in moderator 
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Temperature Drops (Losses) from Fuel to 
Coolant Are Smaller for Molten Salt 

Coolants than for Helium
(Higher Delivered Temperatures for Identical Fuel Limits)

Fuel Element Configuration
(Power Density 5 W/cm3)

Delta T (EC)

Molten Salt

Delta T (EC)

Helium

Cooling Channels in Moderator 280 415

Central Cooling Channel 170 305

Pebble Bed 65 105

Parallel Improvements in Heat Exchangers with Molten Salts 
Compared with Helium



As a Liquid-Cooled Reactor, the AHTR (for the Same 
Exit Coolant Temperatures) Delivers Heat at Higher 

Temperatures than Gas-Cooled Reactors

PWR

LMFBR

AGR

HTGR-GT

AHTR

Hydrogen Production

AHTR

0

200

400

600

800

1000

Liquid
Gas

Te
m

pe
ra

tu
re

 (°
C

)

(General Atomics)

(Hinkley Point B)

(Super Phenix)

(Point Beach)

925°C

675°C

491°C

395°C

310°C

299°C

545°C

319°C

665°C

750°C

850°C

1000°C

Inlet Outlet
Delivered Heat

01-031



AHTR Applications

Electricity Production
Hydrogen Production



The AHTR Uses a Multi-Reheat Brayton Cycle for 
High-Efficiency Electricity Production
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The Multi-Reheat Brayton Cycle Is an Analog to 
Traditional Coal-Plant High-Efficiency Steam Cycles
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Delivery of All the Heat at High 
Temperatures Implies High-Efficiency 

Electricity Production

Temperature
(°C)

Efficiency
(%)

Notes

750 48
(GT-MHR Eff.)
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Materials
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Temperature

1000 59 New
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There Is a Growing Demand for 
Hydrogen

• Growing hydrogen demand (50 million tons/year)
− Large demand for fertilizer and chemical production
− Increasing hydrogen demand by refineries to make 

transport fuels
• Future hydrogen economy

− National program to develop fuel cells for automobiles
− Stationary applications

• Combined power and heat
• Steel production



Hydrogen Can Be Produced with Heat 
from a Nuclear Reactor

• Heat + water hydrogen (H2) + oxygen (O2)
• Characteristics of H2 from water

− Projected thermochemical efficiencies of >50%
− High-temperature heat (800 to 1000ºC) is required 

for thermochemical methods
− Hydrogen production from electrolysis is more 

expensive due to lower efficiency and higher capital 
costs

• The AHTR delivers the heat at the high 
temperatures that are required



Chemical Processes Convert High-Temperature
Heat and Water to Hydrogen and Oxygen

(Example [leading candidate]: Iodine–Sulfur Process)
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AHTR Safety and Economics



The Safety Case for the AHTR: 
Accident Prevention

• Power levels limited by inherent design of the 
reactor
− Negative void coefficient reduces power transients
− Negative fuel Doppler coefficient

• Coolant properties increase safety margins
− Natural circulation of coolant removes radioactive decay 

heat from the reactor core to heat sinks 
− Efficient heat transfer minimizes the temperature rise of the 

fuel during off-normal conditions
− High heat capacity reduces the rate of reactor core heat-up 

during off-normal conditions
− Large temperature margin (~400 ºC) between coolant 

operating temperature and boiling point 



AHTR Nuclear Characteristics Are Similar to 
Those of a Gas-Cooled Reactor

Thermal Flux Comparison Gas and FLIBE Cooled, Graphite 
Moderated Reactors
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The Safety Case for the AHTR:
Accident Control

• Low-pressure (subatmospheric) coolant
− Escaping pressurized fluids provide a mechanism for 

radioactivity to escape from a reactor during an accident
− Low-pressure (<1-atm) salt coolant minimizes accident 

potential for radioactivity transport to the environment
• Molten salt is a secondary barrier to prevent 

radionuclide releases to the environment (fission 
products and actinides dissolved in salt)

• Passive decay-heat-removal systems similar to 
those of proposed modular liquid-metal reactors



The AHTR and Proposed Modular Liquid-Metal Reactors 
Use the Same Decay-Heat-Removal Systems
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The AHTR Has the Potential for Excellent 
Economics Because It Is a Liquid-Cooled 

High-Temperature Reactor

• Large reactor (>1000 MW(e)) with passive 
decay-heat-removal system
− Unique characteristic (Power output in other reactors 

with passive decay -heat removal systems are limited to 
a few  hundred megawatts (electric)

− Economics of scale

• High-efficiency multi-reheat Brayton 
power cycle
− Unique characteristic
− Small cooling systems (cooling towers, etc.)
− Small equipment compared with traditional steam cycles



Observations and Conclusions
• The AHTR combines four technologies

− Molten salt coolant from the Aircraft Nuclear 
Propulsion Program (1950s)

− Gas-cooled high-temperature fuels (1970s)
− LMR passive decay-heat removal (1980s)
− Helium gas-turbine technology (1990s)

• The AHTR has unique capabilities
− All heat delivered at high temperatures
− Large passive cooling systems

• New concept with many options and 
significant uncertainties
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