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Abstract: In this paper, we develop an adaptive torque control
input for Wheeled Mobile Robots (WMRs) that can be utilized in
a modular manner with parameter estimate update laws to enable
unified tracking and regulation. That is, provided a prediction error-
based update law ensures the parameter estimate vector is bounded,
all of the signals are proven to be bounded. An additional stabil-
ity analysis is provided to prove that if the adaptive update law is
designed such that the prediction error is square-integrable and the
estimated inertia matrix is positive-definite, the WMR tracking and
regulation errors are globally asymptotically forced to a control term
that can be made arbitrarily small.

I. Introduction

Over the last decade, the problem of regulating nonholonomic sys-
tems has been heavily targeted by control researchers due to the the-
oretically challenging nature of the problem. Specifically, due to the
structure of the governing differential equations of the underactu-
ated nonlinear system, the regulation problem cannot be solved via
a smooth, time-invariant pure state feedback law due to the implica-
tions of Brockett’s condition [2]. In addition to the regulation problem
for the wheeled mobile robot (WMR), researchers have also targeted
the more practical tracking control problem (which includes the path
following problem as a subset). From a review of literature (see [3],
[4], [8], [17], [19], [21], [22], [23] and the references therein), it can be
observed that: (i) most of the tracking controllers do not solve the reg-
ulation problem due to restrictions on the reference model trajectory
signals, (ii) most control designs rely heavily on the use of Barbalat’s
Lemma and its extensions during the kinematic stability analysis (i.e.,
the Lyapunov derivative is negative semi-definite in the system states
as opposed to negative definite), (iii) some of the kinematic controllers
are not differentiable (e.g., see the kinematic controller developed in
[17]), and hence, the standard integrator backstepping procedure can-
not be used to incorporate the mechanical dynamics (see the discus-
sion in [17]), (iv) few results adaptively compensate for parametric
uncertainty (e.g., payload mass, friction coefficients) in the dynamic
model of the WMR, and (v) all of the adaptive control results rely
on standard gradient adaptive update laws.
To address some of the above issues, Dixon et al. [9] developed a

differentiable kinematic control law that utilizes a dynamic oscillator-
like control term to obtain a global uniformly ultimately bounded so-
lution for the unified WMR tracking and regulation problems. Since
the proposed kinematic controller is differentiable, standard back-
stepping techniques were used to design a nonlinear robust controller
that rejects uncertainty associated with the dynamic model. In [10],
Dixon et al. redesigned the dynamic oscillator of [9] to achieve global
adaptive tracking and regulation control. In [11], Dong et al. ex-
ploited the differentiable kinematic control structure proposed in [22]
to construct a global adaptive asymptotic tracking control law for a
class of nonholonomic systems; however, the Lyapunov derivative for
the controllers in [10], [11] are negative semi-definite in the system
states and gradient adaptive update laws were utilized.
In contrast to the adaptive controllers for WMR, several adaptive
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control results have been formulated for robot manipulators that ex-
plore new methods of parameter estimation. Most of this research
has exploited Lyapunov-based techniques (i.e., the controller and the
adaptive update law are designed in conjunction via a single Lya-
punov function); however, the Lyapunov-based approach tends to
restrict the design of the adaptive update law. For example, many
of the previous adaptive controllers are restricted to utilizing posi-
tion/velocity tracking error based gradient update laws. However,
motivated by the fact that gradient update laws often exhibit slow
parameter convergence (and hence, may retard the transient perfor-
mance of the system) several researchers have explored control designs
that incorporate other forms of update laws. Specifically, Slotine et
al. [24] constructed a prediction error term as the difference between
an estimated, filtered version of the robot dynamics and a filtered
version of the input torque, and then developed a composite adaptive
control law as the composite sum of a least-squares update law driven
by the prediction error and a modified gradient update law driven by
the link position/velocity tracking error. Although composite adap-
tive controllers have been experimentally proven (e.g., see [27]) to
yield faster parameter convergence and improved transient response,
the structure of the adaptive update law is still rather inflexible. In
contrast to the Lyapunov-based approach given in [24], Leal et al. [14]
utilized the flexibility1 provided by previous passivity-based adaptive
control designs to construct a modified least-squares update law with
the link position/velocity tracking error as the input. A modified
least-squares update law based on the link position/velocity tracking
error was also proposed by Sadegh et al. [20] in the design of an expo-
nentially stable desired compensation adaptation law (DCAL) based
controller, provided the desired regression matrix satisfies a semi-
persistency of excitation condition. In [25], Tang et al. developed
an adaptive controller which included the standard gradient update
law, the composite adaptation update law, and an averaging gradient
update law as special cases.
In addition to the Lyapunov and passivity-based approaches given

above, some research has exploited estimation-based approaches. Al-
though these efforts have mainly targeted linear systems, estimation-
based approaches allow for further flexibility in the construction of
parameter update laws (e.g., prediction error-based gradient or nor-
malized/unnormalized least squares update laws can be designed)
due to the modular design of the controller and the update law. For
example, Middleton et al. [18] utilized a modular estimation-based
approach to augment the adaptive computed torque controller of [5]
with additional terms which allowed the closed-loop error system to
be written as a stable, strictly-proper, transfer function with the link
position tracking error as the output and a prediction error related
term as the input. The controller given in [18] enabled link position
tracking and controller/update law modularity in the sense that any
parameter update law could be used as long as its design ensured
that: (i) the parameter estimates remain bounded, (ii) the predic-
tion error is square integrable, and (iii) the estimated inertia matrix
is positive-definite (i.e., a projection-type algorithm is required in
the parameter update law). In [13], Krstic et al. utilized nonlinear
damping [12] to extend previous linear estimation-based techniques
to a class of parametric-strict-feedback nonlinear systems; however,
this class of systems, does not encompass the robot dynamics due
to coupling terms in the inertia matrix. However, motivated by the
development given in [13], de Queiroz et al. [6] developed an adap-

1The passivity-based adaptive controllers provide for some flexibil-
ity in the design of update law; however, the update law must be
designed to satisfy a passive mapping condition.
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tive link position tracking controller for robot manipulators which
achieves controller/update law modularity. Although the result was
similar to the result given in [18], the controller developed in [6] does
not require the estimated inertia matrix to be positive-definite and
does not require the online calculation of the inverse of the estimated
inertia matrix.
Inspired by the result given in [6], in this paper we develop an

adaptive torque control input for WMRs that can be utilized in a
modular manner with parameter estimate update laws to enable uni-
fied tracking and regulation. That is, provided a prediction error-
based update law ensures the parameter estimate vector is bounded,
all of the signals are proven to be bounded. An additional stability
analysis is then provided to prove that if the adaptive update law is
designed such that the prediction error is square-integrable and the
estimated inertia matrix is positive-definite, the WMR tracking and
regulation errors are globally asymptotically forced to a control term
that can be made arbitrarily small. To facilitate this result, we ex-
ploit the WMR kinematic control structure of [9]. The structure of
the kinematic controller is crucial to the development of the modu-
lar adaptive controller because it has characteristics such as: (i) it
is differentiable (enabling integrator backstepping to incorporate the
dynamic model), (ii) it ensures the transformed states of the system
are negative-definite in the time derivative of a radially unbounded
nonnegative function (this is a key advantage over many of the current
WMR designs that are negative semi-definite in the system states and
require tools such as extended Barbalat’s Lemma to prove stability),
and (iii) it solves the unified regulation and tracking control results.

II. Kinematic Model

The kinematic model for the so-called kinematic wheel under the
nonholonomic constraint of pure rolling and non-slipping is given as
follows

q̇ = S(q)v (1)

where q(t), q̇(t) ∈ R3 are defined as

q = [xc yc θ]T q̇ =
h
ẋc ẏc θ̇

iT
(2)

xc(t), yc(t), and θ(t) ∈ R denote the linear position and orientation,
respectively, of the center of mass (COM) of the WMR, ẋc(t), ẏc(t)
denote the Cartesian components of the linear velocity of the COM,
θ̇(t) ∈ R denotes the angular velocity of the COM, the matrix S(q) ∈
R3×2 is defined as follows

S(q) =

"
cos θ 0
sin θ 0
0 1

#
(3)

and the velocity vector v(t) ∈ R2 is defined as

v = [v1 v2]
T =

h
vl θ̇

iT
(4)

with vl(t) ∈ R denoting the linear velocity of the COM of the WMR.

III. Open-Loop Error System

To formulate the tracking control problem, we define the following
time-varying reference model

q̇r = S(qr)vr (5)

where S(·) was defined in (3), qr (t) = [ xrc(t) yrc(t) θr(t) ]
T ∈

R3 denotes the desired time-varying position and orientation trajec-
tory, and vr (t) = [ vr1(t) vr2(t) ]

T ∈ R2 denotes the reference
time-varying linear and angular velocity. With regard to (5), it is
assumed that the signal vr(t) is constructed to produce the desired
motion and that vr(t), v̇r(t), qr(t), and q̇r(t) are bounded for all time.
To facilitate the subsequent control synthesis and the correspond-

ing stability proof, we define the following global invertible transfor-
mation [8]"
w
z1
z2

#
=

 −θ̃ cos θ + 2 sin θ −θ̃ sin θ − 2 cos θ 0
0 0 1
cos θ sin θ 0

  x̃
ỹ

θ̃


(6)

where w(t) ∈ R and z(t) = [ z1(t) z2(t) ]
T ∈ R2 are auxiliary

tracking error variables, and x̃(t), ỹ(t), θ̃(t) ∈ R denote the difference

between the actual Cartesian position and orientation of the COM
and the reference position and orientation of the COM as follows

x̃ = xc − xrc ỹ = yc − yrc θ̃ = θ − θr. (7)

After taking the time derivative of (6) and using (1-7), we can rewrite
the tracking error dynamics in terms of the auxiliary variables defined
in (6) as follows [8]

ẇ = uT JT z + f (8)

ż = u

where J ∈ R2×2 is a skew-symmetric matrix defined as

J =

·
0 −1
1 0

¸
, (9)

f(z, vr) ∈ R is defined as

f = 2 (vr2z2 − vr1 sin z1) , (10)

and the auxiliary variable u(t) = [ u1(t) u2(t) ]
T ∈ R2 is defined

in terms of the WMR position and orientation, linear and angular
velocities, and the reference trajectory as follows

u = T−1v −
·
vr2
vr1 cos θ̃

¸
v = Tu+Π (11)

where the global invertible matrix T (q) ∈ R2×2 is defined as follows

T =

·
(x̃ sin θ − ỹ cos θ) 1
1 0

¸
(12)

and Π (q, qr, vr) ∈ R2 is defined as

Π =

·
vr1 cos θ̃ + vr2 (x̃ sin θ − ỹ cos θ)
vr2

¸
. (13)

IV. Dynamic Model

The WMR dynamic model can be expressed in the following form
[8]

M∗u̇+ V ∗mu+N
∗ = B∗τ (14)

where

M∗ = TTMT, B∗ = TTB, (15)

V ∗m = TTMṪ, N∗ = TT
³
F +MΠ̇

´
M ∈ R2×2 represents the constant, positive-definite inertia matrix,
F (u, q, qr , vr) ∈ R2 represents the friction effects, τ(t) ∈ R2 repre-
sents the torque input vector, B ∈ R2×2 represents a known, constant
global invertible input matrix that governs torque transmission to the
wheels (see [8] for explicit examples of B) and T (q) and Π (q, qr, vr)
are defined in (12) and (13), respectively. The dynamic equation of
(14) exhibits the following properties which will be employed during
the subsequent control development and stability analysis.
Property 1: The transformed inertia matrix M∗(q) is symmetric,
positive-definite, and satisfies the following inequalities [8]

m1 kξk2 ≤ ξTM∗ξ ≤ m2(z, w) kξk2 ∀ξ ∈ R2 (16)

where m1 ∈ R is a known positive constant, m2(z, w) ∈ R is a
known, positive bounding function which is assumed to be bounded
provided z(t) and w(t) are bounded (ṁ2(z, w, ż, ẇ) is also assumed
to be bounded provided z(t), ż(t), w(t), and ẇ(t) are bounded), and
k·k is the standard Euclidean norm.
Property 2: A skew-symmetric relationship exists between the trans-
formed inertia matrix and V ∗m(q, q̇) as follows

ξT
µ
1

2
Ṁ∗ − V ∗m

¶
ξ = 0 ∀ξ ∈ R2 (17)

where Ṁ∗(q) represents the time derivative of the transformed inertia
matrix.
Property 3: The robot dynamics given in (14) can be linearly para-
meterized as follows

Y ϑ =M∗u̇+ V ∗mu+N
∗ (18)
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where ϑ ∈ Rp contains the unknown constant mechanical parameters
(i.e., inertia, mass, and friction effects) and Y (u, u̇) ∈ R2×p denotes
the known regression matrix. We also note that the following linear
parameterization can be formulated

Ysϑ =M
∗u̇d + V ∗mud +N

∗ (19)

where Ys(u, ud, u̇d) ∈ R2×p denotes a known regression matrix, ϑ
is the same unknown constant parameter vector given in (18), and
u̇d(t) ∈ R2 represents the time derivative of the subsequently de-
signed input ud(t) ∈ R2.

V. Control Development

A. Control Objective

The objective in this paper is to design an adaptive controller that
solves the unified tracking and regulation problems for a WMR un-
der the additional constraint of parametric uncertainty for the robot
dynamics of (14) such that a modularity is achieved in the design of
the controller and the parameter update law. To quantify the error
between the parameter estimate generated by the modular adaptive
update law and the actual parameters of the WMR dynamic model,
we define a parameter estimation error vector as follows

ϑ̃ = ϑ− ϑ̂ (20)

where ϑ̂(t) ∈ Rp is a dynamic estimate of ϑ, defined in (18). Moti-
vated by the desire to facilitate a modular adaptive control scheme
that is independent of acceleration measurements, we also define a
measurable prediction error ε(t) ∈ R2 as follows

ε = Yf ϑ̃ = Yfϑ− Yf ϑ̂ = τf − Yf ϑ̂ (21)

where the filtered regression matrix [18] Yf (u) ∈ R2×p is defined by
the following differential equation and initial condition

Ẏf + βYf = βY, Yf (u(0)) = 0 (22)

where Y (u, u̇) was defined in (18) (see [16] for details regarding an
acceleration independent formulation of Yf (u)), β ∈ R is a positive
control term, and the filtered torque τf (t) ∈ R2 is generated by the
following differential equation and initial condition

τ̇f + βτf = βB∗τ , τf (0) = 0 (23)

where τ(t) and B∗(q) are defined in (14) and (15), respectively.
To achieve the objective of simultaneously solving the tracking and

regulation problems, we will employ a control strategy that exploits a
dynamic oscillator-like structure. To facilitate this control design, we
define an auxiliary error signal z̃(t) ∈ R2 as the difference between
the subsequently designed dynamic oscillator-like signal zd(t) ∈ R2
and the transformed variable z(t), defined in (6), as follows

z̃ = zd − z. (24)

Moreover, since we will also employ the integrator backstepping tech-
nique [1] to incorporate the dynamic model, we define a backstep-
ping error signal η(t) ∈ R2 to quantify the mismatch between the
kinematic velocity signal u(t) and the subsequently designed desired
kinematic velocity input, denoted by ud(t), as follows

η = ud − u. (25)

B. Control Design

Based on the open-loop kinematic system given in (8) and the
subsequent stability analysis, we design ud(t) as follows [9]

ud = ua − k2m2z (26)

where the auxiliary control term ua(t) ∈ R2 is defined as

ua =

Ã
k1m2w + f

δ2d

!
Jzd + Ω1zd, (27)

the auxiliary signal zd(t) is defined by the following dynamic
oscillator-like relationship

żd =
δ̇d

δd
zd +

Ã
k1m2w + f

δ2d
+wΩ1

!
Jzd (28)

zTd (0)zd(0) = δ2d(0),

the auxiliary terms Ω1(w, z, vr) ∈ R and δd(t) ∈ R are defined as

Ω1 = k2m2 +
δ̇d

δd
+w

Ã
k1m2w + f

δ2d

!
(29)

and
δd = α0 exp(−α1t) + ε1 (30)

respectively, k1, k2, α0, α1, ε1 ∈ R are positive, constant control
gains, f(z, vr) was defined in (10), and m2(z, w) was given in (16).
Furthermore, based on the transformed dynamic model given by (14)
and the subsequent stability analysis, we design the control torque
input τ(t) as follows

τ = (B∗)−1
³
τ∗ + Ysϑ̂+ kam2η

´
(31)

where τ∗(t) ∈ R2 is defined as follows

τ∗ =

"
1

β
Yf

.

ϑ̂+

Ã ·
M̂∗ − V̂ ∗m

!
η

#
+ kn kYsk2i∞ η (32)

+kn

°°°° 1β Yf
.

ϑ̂

°°°°2 η + kn
°°°°°
Ã ·
M̂∗ − V̂ ∗m

!
η

°°°°°
2

η

+kn kJzwk2 η + kn kz̃k2 η

where m2(z, w), Ys(u, ud, u̇d), ϑ̂(t), and Yf (u) are defined in (16),

(19), (20), and (22), respectively,
.

ϑ̂ (t) ∈ Rp (which includes
·
M̂∗ (·)

and V̂ ∗m (·)) denotes the time derivative of the dynamic estimate ϑ̂(t),
and ka, kn ∈ R are positive constant control gains.
Remark 1: Motivation for the structure of (28) is obtained by tak-

ing the time derivative of zTd (t)zd(t) as follows

d

dt

³
zTd zd

´
= 2zTd

Ã
δ̇d

δd
zd +

Ã
k1m2w + f

δ2d
+wΩ1

!
Jzd

!
(33)

where (28) has been utilized. After noting that the matrix J of (9) is
skew symmetric, we can rewrite (33) as follows

d

dt

³
zTd zd

´
= 2

δ̇d

δd
zTd zd. (34)

As result of the selection of the initial conditions given in (28), it is
easy to verify that

zTd zd = kzdk2 = δ2d (35)

is a unique solution to the differential equation given in (34) (see [9]
for motivation regarding the design of δd(t)). The bracketed control
terms given in (32) are incorporated in the control design to cancel
similar terms in the subsequent stability analysis. The remaining
terms of (32) are incorporated to facilitate the input-to-state stability
property of the closed-loop system with respect to ϑ̃(t).

C. Closed-Loop Error Systems

To facilitate the closed-loop error system development, we inject
the auxiliary control input ud(t) into the open-loop dynamics of w(t)
given by (8) by adding and subtracting the term uTd (t)Jz(t) to the
right-side of (8) and utilizing (25) to obtain the following expression

ẇ = −uTd Jz + ηT Jz + f. (36)

After substituting (26) for ud(t), adding and subtracting uTa (t)Jzd(t)
to the resulting expression, utilizing (24), and exploiting the skew
symmetry of J defined in (9), we can rewrite the dynamics for w(t)
as follows

ẇ = −uTa Jzd + uTa Jz̃ + ηT Jz + f. (37)

Finally, by substituting (27) for only the first occurrence of ua(t) in
(37) and then utilizing the equality given by (35), the skew symmetry
of J defined in (9), and the fact that JT J = I2 (Note that I2 denotes
the standard 2×2 identity matrix), we can obtain the final expression
for the closed-loop error system for w(t) as follows

ẇ = −k1m2w + u
T
a Jz̃ + ηT Jz. (38)
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To determine the closed-loop error system for z̃(t), we take the
time derivative of (24), substitute (28) for żd(t), and then substitute
(8) for ż(t) to obtain

.
z̃ =

δ̇d

δd
zd +

Ã
k1m2w + f

δ2d
+wΩ1

!
Jzd + η − ud (39)

where the auxiliary control input ud(t) was injected by adding and
subtracting ud(t) to the right-side of (39), and (25) was utilized. After
substituting (26) for ud(t) and then substituting (27) for ua(t) in the
resulting expression, we can rewrite (39) as follows

.
z̃ =

δ̇d

δd
zd + wΩ1Jzd −Ω1zd + k2m2z + η. (40)

After substituting (29) for only the second occurrence of Ω1(t) in (40)
and using the fact that JJ = −I2, we can cancel common terms and
rearrange the resulting expression to obtain

.
z̃ = −k2m2z̃ +wJ

"Ã
k1m2w + f

δ2d

!
Jzd +Ω1zd

#
+ η (41)

where (24) has been utilized. Since the bracketed term in (41) is
equal to ua(t) defined in (27), we can obtain the final expression for
the closed-loop error system for

.
z̃(t) as follows

.
z̃ = −k2m2z̃ +wJua + η. (42)

To develop the closed-loop error system for η(t), we take the
time derivative of (25), substitute (14) for u̇(t), add and subtract
V ∗m (q, q̇)ud(t), and then rearrange the resulting expression as follows

M∗η̇ = Ysϑ− V ∗mη −B∗τ (43)

where (19) and (25) were utilized. After substituting (31) and (32)
into (43), the following expression is obtained

M∗η̇ = −V ∗mη + Ysϑ̃− kam2η − 1

β
Yf

.

ϑ̂−
Ã ·
M̂∗ − V̂ ∗m

!
η (44)

−kn
°°°° 1β Yf

.

ϑ̂

°°°°2 +
°°°°°
Ã ·
M̂∗ − V̂ ∗m

!
η

°°°°°
2

+ kYsk2i∞ + kJzwk2 + kz̃k2
´
η.

where (20) was utilized.

VI. Input-to-State Stability Result

Theorem 2: Given the closed-loop error system in (38), (42), and
(44), if ϑ̃(t) ∈ L∞

£
0, tf

¢
then all signals are bounded under closed-

loop operation for
£
0, tf

¢
where tf denotes the final time.

Proof: To prove Theorem 2, we define a non-negative function
V1(t) ∈ R as follows

V1 =
1

2
ηTM∗η +

1

2
w2 +

1

2
z̃T z̃ (45)

where (45) is upper and lower bounded as follows

λ1 kξk2 ≤ V1 ≤ λ2m2 kξk2 (46)

where λ1,λ2 ∈ R1 are positive bounding constants, m2(z, w) was
given in (16), and ξ(t) ∈ R5 is defined as follows

ξ =
h
w, z̃T , ηT

iT
. (47)

After taking the time derivative of (45), substituting for the closed-
loop error systems given in (38), (42), and (44), utilizing (17), and
then cancelling common terms, the following expression is obtained

V̇1 = −kam2η
T η − k1m2w

2 − k2m2z̃
T z̃ (48)

+
h
kYsk

i∞ kηk
°°°ϑ̃°°° − kn kYsk2

i∞ kηk
2
i

+

°°°°°( ·
M̂∗ − V̂ ∗m)η

°°°°° kηk− kn
°°°°°( ·
M̂∗ − V̂ ∗m)η

°°°°°
2

kηk2


+

"°°°° 1β Yf
.

ϑ̂

°°°° kηk− kn °°°° 1β Yf
.

ϑ̂

°°°°2 kηk2
#

+
h
kJzwk kηk− kn kJzwk2 kηk2

i
+
h
kz̃k kηk− kn kz̃k2 kηk2

i

where the notation k·ki∞ denotes the induced infinity norm of a sig-
nal. After completing the squares for the bracketed terms of (48), the
following upper bound can be formulated

V̇1 ≤ −kam2 kηk2 − k1m2w
2 − k2m2 kz̃k2 + 1

kn

°°°ϑ̃°°°2 + 1

kn
(49)

which can be further upper bounded by the use of (46) as follows

V̇1 ≤ −γ1V1 + γ2 (50)

where γ1, γ2 ∈ R are positive constants defined as follows

γ1 =
min (ka, k1, k2)

λ2
(51)

γ2 =
1

kn
sup
t

°°°ϑ̃(t)°°°2 + 1

kn
(52)

where the assumption that ϑ̃(t) ∈ L∞
£
0, tf

¢
(i.e., a constant bounded

value for sup
t

°°°ϑ̃(t)°°°2 exists) was utilized. After solving the differential
inequality given in (50), the following upper bound can be formulated

V1(t) ≤ V1(0)e−γ1t + e−γ1t
tZ
0

eγ1ξγ2dξ

≤ V1(0)e−γ1t + γ2
γ1
.

(53)

Hence, from (45) and (53), the following inequality can be obtained

kξ(t)k ≤
s

λ2m2(z(0), w(0))

λ1
kξ(0)k2 e−γ1t + γ2

γ1λ1
<∞. (54)

Based on (54) and (47), it is straightforward to see that w(t), z̃(t),
η(t) ∈ L∞

£
0, tf

¢
. After utilizing (24), (35), and the fact that z̃(t),

δd(t) ∈ L∞
£
0, tf

¢
, we can also conclude that z(t), zd(t) ∈ L∞

£
0, tf

¢
.

From (8), (10), (25-29), (38), and (42), we can prove that f(t), ud(t),
ua(t), żd(t),

.
z̃(t), ż(t), ẇ(t), η̇(t), Ω1(t), u(t) ∈ L∞

£
0, tf

¢
. Given

that w(t), z(t), u(t) ∈ L∞
£
0, tf

¢
, we can utilize (1-6), (12), and

(13) to prove that q(t), q̇(t), v(t), x̃(t), ỹ(t), θ̃(t), T (q), Π (q, qr, vr) ∈
L∞

£
0, tf

¢
. Based on the previous bounding arguments, we can prove

that u̇d(t) ∈ L∞, and hence, Ys(u, ud, u̇d), Yf (u) ∈ L∞
£
0, tf

¢
. Since

η̇(t), u̇d(t) ∈ L∞
£
0, tf

¢
, we can utilize the time derivative of (25)

to prove that u̇(t) ∈ L∞
£
0, tf

¢
; hence, Y (u, u̇) ∈ L∞

£
0, tf

¢
. Based

on the assumption that ϑ̃(t) ∈ L∞
£
0, tf

¢
, we can now utilize (20)

and (21) to prove that ϑ̂(t), ε(t), τf (t) ∈ L∞
£
0, tf

¢
. As described

in [7], given that u(t), ε(t) ∈ L∞
£
0, tf

¢
, we can now prove that

.

ϑ̂(u, ε) ∈ L∞
£
0, tf

¢
; hence, we can now utilize (31) and (32) to prove

that τ(t), τ∗(t) ∈ L∞
£
0, tf

¢
. ¥

VII. Tracking and Regulation Result

Theorem 3: Given the control law (31), (32), and any update law,

denoted by
.

ϑ̂ (u, ε), that ensures ϑ̂(t) ∈ L∞
£
0, tf

¢
, M̂∗(q) is positive-

definite, and that ε(t) ∈ L2
£
0, tf

¢
, all signals are bounded during

closed-loop operation for t ∈ [0,∞) and the position and orientation
tracking errors |x̃(t)| , |ỹ(t)| ,

¯̄̄
θ̃(t)

¯̄̄
asymptotically approach a positive

control term as follows

lim
t→∞ |x̃(t)| , |ỹ(t)| ,

¯̄̄
θ̃(t)

¯̄̄
= ρε1 (55)

where ρ ∈ R is a positive bounding constant and ε1, given in (30),
can be made arbitrarily small.
Proof: Theorem 2 can be directly applied to prove that all signals

are bounded on
£
0, tf

¢
during closed-loop operation. As in [13], the

bounds are dependent only on the initial conditions, control gains,
and the reference trajectory, (i.e., not dependent on tf ); hence, due
to the independence of time, tf can be expanded to ∞. To prove
(55), we can utilize (18) and (19) to obtain the following expression

Y ϑ̃ = Ysϑ̃− M̃∗η̇ − Ṽ ∗mη (56)

where M̃∗(q), Ṽ ∗m(q, q̇) ∈ R2×2 are defined as follows

M̃∗ =M∗ − M̂∗, Ṽ ∗m = V ∗m − V̂ ∗m (57)
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and Ys(u, ud, u̇d)ϑ̃(t) is defined in (19). With the intent of writing the
term Ys(u, ud, u̇d)ϑ̃(t) in terms of ε(t), we utilize (20-22) to obtain
the following expression

1

β
ε̇+ ε =

1

β
Ẏf ϑ̃+ Yf ϑ̃− 1

β
Yf

·
ϑ̂

= Y ϑ̃− 1

β
Yf

·
ϑ̂.

(58)

After substituting (56) into (58) for Y (u, u̇) ϑ̃(t), the following ex-
pression can be obtained

Ysϑ̃ =
1

β
ε̇+ ε+ M̃∗η̇ + Ṽ ∗mη +

1

β
Yf

·
ϑ̂. (59)

By substituting (59) into (44) and utilizing (57), we can rewrite the
closed-loop system given in (44) as follows

M̂∗η̇ = −Aη + 1

β
ε̇+ ε−

·
M̂∗η (60)

where A (t) ∈ R is a positive, time-varying signal defined as follows

A = kam2 + kn

kYsk2i∞ +

°°°°° 1β Yf
·
ϑ̂

°°°°°
2

(61)

+

°°°°°
Ã ·
M̂∗ − V̂ ∗m

!
η

°°°°°
2

+ kJzwk2 + kz̃k2
 .

To facilitate the subsequent analysis, we define a variable transfor-
mation χ(t) ∈ R2 as follows [6]

χ = M̂∗η − 1

β
ε. (62)

After taking the time derivative of (62) and substituting (60) into the
resulting expression, we obtain

χ̇ = −Aη + ε. (63)

By utilizing (62), (63) can be rewritten as follows

χ̇ = −A
³
M̂∗

´−1
χ+

µ
In − 1

β
A
³
M̂∗

´−1¶
ε. (64)

To examine the stability of χ(t), we define another transformation,
denoted by ψ(t) ∈ R, as follows [6]

ψ =

r
1

2
χTχ. (65)

After squaring (65) and then taking the time derivative of the result-
ing expression, we obtain the following expression

d

dt

¡
ψ2
¢

= 2ψψ̇ ≤ −2Aλmin
n
(M̂∗)−1

o
ψ2 (66)

+
√
2

°°°°(In − 1

β
A(M̂∗)−1)

°°°°
i∞
kεkψ

where (64) and (65) were utilized, and λmin {·} denotes the minimum
eigenvalue of the argument. Based on the definition given in (65), we
have that ψ(t) ≥ 0; hence, we can use (66) to obtain the following
inequality

ψ̇ ≤ −ζ1ψ + ζ2 kεk (67)

where the positive constants ζ1, ζ2 ∈ R are defined as follows2

ζ1 = inf
t
{A}λmin

½³
M̂∗

´−1¾
(68)

ζ2 =

√
2

2
sup
t

°°°°µIn − 1

β
A
³
M̂∗

´−1¶°°°°
i∞
.

2Provided M̂(q) is positive definite, M̂−1(q) will also be positive
definite, and hence, the minimum eigenvalue will be positive. More-
over, since all signals are bounded from the previous analysis, the
time-varying signals A(t) and M̂−1(q(t)) can be bounded by con-
stants.

The solution of the differential inequality of (67) is given by

ψ(t) ≤ ψ(0)e−ζ1t + ζ2

tZ
0

e−ζ1(t−ξ) kε (ξ)k dξ. (69)

After utilizing Holder’s inequality [26], (69) can be rewritten as fol-
lows

|ψ(t)| ≤ |ψ(0)| e−ζ1t + ζ2

vuuut tZ
0

e−ζ1(t−ξ)dξ

·

vuuut tZ
0

e−ζ1(t−ξ) kε (ξ)k2 dξ

≤ |ψ(0)| e−ζ1t + ζ2p
ζ1

vuuut tZ
0

e−ζ1(t−ξ) kε (ξ)k2 dξ.

(70)

After squaring (70) and integrating the resulting expression, we ob-
tain the following expression

tZ
0

|ψ(σ)|2 dσ ≤ |ψ(0)|2
ζ1

+
2ζ22
ζ1

tZ
0

 σZ
0

e−ζ1(σ−ξ) kε (ξ)k2 dξ
 dσ

(71)
where the fact that|ψ(0)| e−ζ1t + ζ2p

ζ1

vuuut tZ
0

e−ζ1(t−ξ) kε (ξ)k2 dξ


2

(72)

≤ 2(
¯̄
ψ2(0)

¯̄
e−2ζ1t +

ζ22
ζ1

tZ
0

e−ζ1(t−ξ) kε (ξ)k2 dξ)

has been utilized. After reversing the order of integration in (71), the
following expression is obtained

tZ
0

|ψ(σ)|2 dσ ≤ |ψ(0)|2
ζ1

+
2ζ22
ζ1

tZ
0

eζ1ξ kε (ξ)k2
 tZ

ξ

e−ζ1σdσ

 dξ

≤ |ψ(0)|2
ζ1

+
2ζ22
ζ1

tZ
0

kε (ξ)k2 1

ζ1
dξ.

(73)

Based on the assumption that
.

ϑ̂ (u, ε) is designed to ensure that ε(t) ∈
L2, we can utilize (73) to prove that

kψk2 ≤
|ψ(0)|2

ζ1
+
2ζ22
ζ21

kεk2 <∞ (74)

where k·k2 denotes the L2 norm of a signal. From (74), we can
conclude that ψ(t) ∈ L2; hence, from (65), we can prove that χ(t) ∈
L2. Based on the results from Theorem 2, we can utilize (61) and
(63) to prove that A(t), χ̇(t) ∈ L∞. After taking the time derivative
of (62) and utilizing the fact that η̇(t),

·
M̂∗ (u, ε), χ̇(t) ∈ L∞, we

can conclude that ε̇(t) ∈ L∞. Since χ(t), ε(t) ∈ L∞ ∩ L2 and χ̇(t),
ε̇(t) ∈ L∞, we can use Barbalat’s Lemma [24] to prove that

lim
t→∞χ(t), ε(t) = 0 (75)

and hence, from (62), we can prove that

lim
t→∞ η(t) = 0. (76)

From (45), (48), and (76), we can now prove that

lim
t→∞ z̃(t), w(t) = 0. (77)
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Based on the result given in (77), we can now apply the triangle
inequality to (24) and utilize (35) to prove that

lim
t→∞ kzk = δd(t). (78)

By utilizing (30), (77), and (78), the result given in (55) be be ob-
tained from taking the inverse of the transformation given in (6).
¥
Remark 4: The proof for Theorem 3 requires that

.

ϑ̂ (u, ε) be de-
signed so that ϑ̂ (t) ∈ L∞, M̂∗(q) is positive-definite, and ε(t) ∈ L2.
Typical parameter adaptation algorithms which ensure that ϑ̂ (t) ∈
L∞ and ε(t) ∈ L2 include the following gradient update law

.

ϑ̂ = ΓY Tf ε (79)

where Γ ∈ Rp×p is a positive-definite gain matrix and the following
least-squares estimator

.

ϑ̂ =
PY Tf ε

1 + γptr
n
YfPY

T
f

o , Ṗ = −
PY Tf YfP

1 + γptr
n
YfPY

T
f

o (80)

where P (t) ∈ Rp×p is a time-varying symmetric matrix, γp ∈ R is
a nonnegative constant (if γp = 0 the standard unnormalized least-
squares estimator is obtained), and tr {·} denotes the trace of a matrix
(see [7] for further details). To ensure that M̂∗(q) is positive-definite,
a standard projection algorithm can be incorporated in the design of
(79) and (80) (see [1] and [15]).
Remark 5: Based on the fact that no restrictions were placed on

the reference trajectory vr(t) with the exception that vr(t), v̇r(t) ∈
L∞, it is straightforward to prove that the tracking control result
given in (3) is also valid for the regulation problem (i.e., vr(t) = 0).

VIII. Conclusions

We have developed an adaptive torque control input for wheeled
mobile robots that can be utilized in a modular manner with parame-
ter estimate update laws to solve the unified tracking and regulation
problems. To achieve this result, we first leveraged off of our previ-
ous work in [9] to develop a differentiable kinematic controller that
solves the unified tracking and regulation problems and facilitates in-
tegrator backstepping. Another motivation for the WMR kinematic
control design is that a Lyapunov-based function can be constructed
such that its time derivative is negative-definite, and hence, facilitates
the modular adaptive control design and stability analysis (e.g., it is
not clear how typical WMR kinematic controllers which exploit the
use of extended Barbalat’s Lemma to prove the stability result (such
as [21]), can be utilized in conjunction with the modular adaptive
control strategy). After developing the kinematic control design, we
then leveraged off of the work of [6], [13] for robot manipulators, to
develop a torque control input that was proven to yield update law
modularity. That is, provided a prediction error-based update law
ensures the parameter estimate vector is bounded, then all of the
signals were proven to be bounded. An additional stability analy-
sis was then provided to prove that if the adaptive update law was
designed such that the prediction error is square-integrable and the
estimated inertia matrix is positive-definite, the WMR tracking and
regulation errors are asymptotically forced to a control term that can
be made arbitrarily small. An advantage of the update law modular-
ity is that the control designer is provided with additional flexibility
in the design of the adaptive update law. That is, faster parameter
convergence, and hence, potentially faster transient performance can
be facilitated by various parameter update laws (e.g., least squares es-
timator). Future work will target experimental demonstration of the
modular adaptive controller, and the development of a control scheme
that ensures global asymptotic tracking and regulation control.
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