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Abstract: In this paper, we utilize a Lyapunov-based design ap-
proach to construct a visual servoing controller for a robot ma-
nipulator that ensures uniformly ultimately bounded (UUB) end-
effector position tracking performance despite parametric uncertainty
throughout the entire robot/camera system. The UUB end-effector
tracking result exploits information from both a fixed camera and
a camera-in-hand, although both cameras contain parametric uncer-
tainty in the calibration parameters (e.g., focal length, image center,
scaling factors, and camera position and orientation). The advan-
tages of the cooperative camera configuration are that: (i) the fixed
camera can be mounted so that a large robot workspace is visible,
(ii) the camera-in hand is mounted so that a high resolution, close-up
view of an object is achieved, facilitating the potential for more pre-
cise robotic motion, and (iii) the fixed camera provides a mechanism
for treating the problem of determining the relative velocity of the
robot end-effector with respect to the object for the camera-in-hand
object tracking problem when the camera is uncalibrated.

I. Introduction

To enable robotic systems with the ability to operate autonomously
in unstructured environments, researchers have investigated the use
of vision-based approaches (see [10], [26], and the references within for
a survey of these techniques). Although a vision system can provide a
robot with a unique sense of perception, several technical issues have
impacted the design of robust visual servo robot controllers includ-
ing1 : (i) camera configuration (pixel resolution versus field-of-view),
(ii) camera calibration, and (iii) dynamic effects of the robotic sys-
tem. For example, for vision systems that utilize a camera mounted
in a fixed configuration (i.e., the eye-to-hand configuration), the cam-
era is typically mounted far enough away from the robot workspace
to ensure that the robot and desired target objects will remain in
the camera’s view. Unfortunately, by mounting the camera in this
configuration the task-space area that corresponds to a pixel in the
image-space can be quite large, resulting in low resolution and noisy
position measurements; hence, the precision and stability of the ro-
bot could be adversely affected. For vision systems that utilize a
camera mounted in the camera-in-hand configuration (also referred
to as the eye-in-hand configuration), the camera is naturally close to
the workspace, providing for higher resolution measurements and less
noise due to the fact that each pixel represents a smaller task-space
area; however, the field-of-view of the camera is significantly reduced
(i.e., an object may be located in the robot’s workspace but be out of
the camera’s view due to the position of the end-effector). Recently,
Flandin et al. [8] proposed an innovative multi-camera solution to ad-
dress the aforementioned configuration issues. Specifically, [8] made
the first steps towards cooperatively utilizing global and local infor-
mation obtained from a fixed camera and a camera-in-hand; unfor-
tunately, to prove the stability results, the translation and rotation
tasks of the controller were treated separately (i.e., the coupling terms
were ignored) and the cameras were considered to be calibrated. The
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ergy (DOE) under contract DE-AC05-00OR22725 and in part by the
U.S. DOE Environmental Management Sciences Program (EMSP)
projects ID No. 82797 and ID No. 82794 at ORNL, by ONR Project
No. N00014-00-F-0485 at ORNL, and by U.S. NSF Grant DMI-
9457967, ONR Grant N00014-99-1-0589, a DOC Grant, and an ARO
Automotive Center Grant.
1Note that delays due to image processing has historically been a

problem related to the development of visual servo controllers; how-
ever, as camera and computation advances continue to be made, this
issue is becoming less important.

approach by Flandin et al. is in contrast to typical multi-camera ap-
proaches, that utilize a stereo-based configuration (e.g., [1], [2], [11],
[12], [13], [14], [23], [29]), since stereo-based approaches typically do
not simultaneously exploit local and global views of the robot and
the workspace.
A problem common to both the fixed camera and the camera-

in-hand configuration is the need for the cameras to be calibrated.
That is, if the intrinsic and extrinsic camera calibration parameters2

are unknown, or slowly change over time, then the relationship be-
tween the task-space and the image-space will be erroneous, leading
to unpredictable robotic performance and instability. As stated in
[4], [11], [15], another issue that has impacted the development of ro-
bust vision-based controllers is that few visual-servo controllers have
been proposed that take into account the nonlinear robot dynamics.
Motivated by the desire to take into account uncalibrated camera ef-
fects and the mechanical dynamics of the robot, several researchers
have recently designed visual-servo controllers that ensure the con-
vergence of the position error for the setpoint regulation problem.
For example, Kelly and Marquez [17] designed a setpoint controller
for the fixed-camera problem that compensated for unknown intrin-
sic camera parameters, provided perfect knowledge of the camera
orientation was available. In [15], Kelly redesigned the setpoint con-
troller of [17] to also take into account uncertainties associated with
the camera orientation; however, the controller yielded a local as-
ymptotic stability result that required exact knowledge of the robot
gravitational term and that the difference between the estimated and
actual camera orientation be restricted to the interval (−90◦, 90◦).
In [16], Kelly et al. extended the transpose Jacobian control phi-
losophy given in [30] to develop a position regulation controller for
the camera-in-hand problem, provided exact knowledge of the ro-
bot gravitational term is available and that depth information was
measureable. In [24], Maruyama and Fujita proposed position set-
point controllers for the camera-in-hand configuration; however, the
proposed controllers required exact knowledge of the camera orien-
tation and assumed equal camera scaling factors. In [32], Zergeroglu
et al. proposed a uniformly ultimately bounded (UUB) regulating
controller for the camera-in-hand configuration provided the camera
orientation is within a certain range.
In addition to the setpoint regulation problem, several results have

also been proposed for the tracking problem. For example, in [3],
Bishop and Spong developed an adaptive visual servo position track-
ing control scheme for the fixed camera configuration that compen-
sated for camera calibration errors in the feedback loop; however, the
result required exact knowledge of the robot dynamics and that the
desired position trajectory be persistently exciting. In [18], Kelly et
al. utilized a composite velocity inner loop, image-based outer loop
position tracking controller for the fixed camera configuration to ob-
tain a local asymptotic stability result; however, exact model knowl-
edge of the robot dynamics and a calibrated camera are required, and
the difference between the estimated and actual camera orientation
is restricted to the interval (−90◦, 90◦). In [32], Zergeroglu et al.
also proposed a UUB position tracking controller that rejects uncer-
tainty throughout the entire robot-camera system for a fixed camera
configuration. Recently, in [31], Zergeroglu et al. designed an adap-
tive position tracking controller for a fixed camera configuration that
accounted for parametric uncertainty throughout the entire robot-
camera system provided the camera orientation is restricted to the
interval (−90◦, 90◦). Note that due to the relative velocity problem
associated with the camera-in-hand configuration, all of the previ-

2The camera calibration parameters are composed of the intrinsic
parameters (i.e., image center, camera scale factors, and camera mag-
nification factor) and extrinsic parameters (i.e., camera position and
orientation).
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ously mentioned tracking results are developed for the fixed camera
configuration. That is, for the camera-in-hand configuration, camera
calibration is further necessitated by the need to relate the velocities
between the camera and the image-space objects.
Inspired by the recent results given in [8], in this paper we consider

a new cooperative visual servoing approach that utilizes information
from both a fixed camera and a camera-in-hand. The advantages
of the cooperative camera configuration are that: (i) the fixed cam-
era can be mounted so that the complete robot workspace is visible,
(ii) the camera-in-hand is mounted so that a high resolution, close-up
view of an object is achieved, facilitating the potential for more precise
robotic motion, and (iii) the fixed camera provides a mechanism for
treating the problem of determining the relative velocity of the robot
end-effector with respect to the object for the uncalibrated camera-
in-hand tracking problem. Specifically, using Lyapunov-based design
and analysis techniques similar to [32], we construct a robust nonlin-
ear visual servoing controller that forces the end-effector of a robot
manipulator to achieve UUB tracking of an object trajectory that is
represented by an uncertain object motion model, provided the ini-
tial orientation of the camera-in-hand is within a certain range. To
provide for greater robustness, we simultaneously confront the issues
of parametric uncertainty in the camera calibration and in the para-
meters of the dynamic model of the robot manipulator (e.g., mass,
inertia, friction coefficients, and additive bounded disturbances). In
comparison to previous work, we note that the visual servo control re-
sult in this paper has several advantages over previous results such as:
(i) the more general problem of object tracking is confronted versus
setpoint regulation, (ii) it is the first visual servo result that exploits
information obtained from an uncalibrated camera-in-hand configura-
tion to allow the end-effector of a robot manipulator to track a moving
object (i.e., the novel cooperative camera approach provides a mech-
anism to overcome the relative velocity issue described previously),
and (iii) the UUB tracking result is obtained despite parametric un-
certainty in the robot dynamics (which includes unmodeled additive
bounded disturbances) and parametric uncertainty in the camera cal-
ibration.
This paper is organized in the following manner. In Section II,

we develop the dynamic model of a 2-link planar robot manipulator,
the pin hole lens models for both the fixed camera and the camera-in-
hand configurations, and the object motion model. In the Section III,
we develop the robust visual servo tracking control design and in Sec-
tion IV, we prove that the controller yields UUB tracking. Simulation
results are presented in Section V to illustrate the closed-loop perfor-
mance of the developed controller. Concluding remarks are given in
Section VI.

II. Model Development

A. Robot Dynamic Model

The dynamic model for a two-link, planar robot manipulator is
given as follows [22]

M(q)q̈ + Vm(q, q̇)q̇ +G(q) + F (q̇) + Td = τ (1)

where q(t), q̇(t), q̈(t) ∈ R2 denote the link position, velocity, and
acceleration vectors, respectively, M(q) ∈ R2×2 represents the iner-
tia matrix, Vm(q, q̇) ∈ R2×2 represents centripetal-Coriolis matrix,
G(q) ∈ R2 denotes the gravity effects, F (q̇) ∈ R2 represents the fric-
tion effects, Td ∈ R2 denotes a vector of unknown additive bounded
disturbances, and τ(t) ∈ R2 is the torque input vector. The robot
model of (1) satisfies the following properties [22] that are utilized in
the subsequent control design and analysis.
Property 1: The inertia matrix M(q) is symmetric and positive-
definite, and satisfies the following inequalities

m1 kξk2 ≤ ξTM(q)ξ ≤ m2 kξk2 ∀ξ ∈ R2 (2)

where m1,m2 ∈ R are positive bounding constants and k·k denotes
the standard Euclidean norm.
Property 2: The inertia and centripetal-Coriolis matrices satisfy the
following skew symmetric relationship

ξT
µ
1

2

·
M(q)− Vm(q, q̇)

¶
ξ = 0 ∀ξ ∈ R2 (3)

where
·
M(q) denotes the time derivative of the inertia matrix.

Property 3: The left side of (1) can be partially linearly parameter-
ized as shown below

M(q)
..
q + Vm(q, q̇)q̇ +G(q) + F (q̇) =W

¡
q, q̇,

..
q
¢
φ (4)

where φ ∈ Rm contains the constant system parameters, and the
regression matrix W (·) ∈ R2×m contains known functions dependent
on the signals q(t), q̇(t), and q̈(t).
With regard to the kinematic structure of the robot manipulator,

we make the following assumptions.
Assumption 1: There is a set of task-space variables x ∈ R2, an open
set S1 ⊂ R2, and a function Ω ∈ C2 (S1), Ω : S1 → R2, such that

x = Ω(q) (5)

denotes the forward kinematics and

J(q) =
∂Ω(q)

∂q
∈ R2×2 (6)

represents the Jacobian matrix where J ∈ C1 (S1).
Assumption 2: The minimum singular value of J(q), is greater than
a known, small positive constant δ > 0, such that max

©°°J−1(q)°°ª
is known a priori, and hence, all kinematic singularities are always
avoided. Moreover, the Jacobian is upper bounded as follows

kJk ≤ ζJ (7)

where ζJ ∈ R1 is a known bounding constant.
Remark 1: For simplicity, the previous model development has

been formulated for a non-redundant robot manipulator (i.e., we as-
sume n = 2); however, the results delineated in this paper can be
extended to the redundant case (see [31] for details).

B. Camera Model
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Fig. 1. Cooperative camera configuration

The camera-robot configuration that is considered in this paper is
shown in Figure 1. As shown in Figure 1, we exploit the use of both
a fixed camera and a camera-in-hand. To model each of the cameras,
we utilize the so-called pinhole lens model. Specifically, the model for
the fixed camera is given below [3]·

yo1
yo2

¸
= −B1

·
xo1
xo2

¸
+ p (8)

where yo(t) = [ yo1(t) yo2(t) ]
T ∈ R2 represents the image-space

position of an object, xo(t) = [ xo1(t) xo2(t) ]
T ∈ R2 represents

the task-space position of an object, p ∈ R2 is a constant vector
defined as follows

p =

·
O1
O2

¸
+B1

·
Oo1
Oo2

¸
, (9)

where [O1, O2]
T ∈ R2 denotes the image center that is defined as

the frame buffer coordinates of the intersection of the optical axis
with the image plane (see [21] for details), [Oo1, Oo2]

T ∈ R2 denotes
the projection of the camera’s optical center on the task-space, and
B1 ∈ R2×2 denotes a subsequently defined constant scaled rotation
matrix. The model for the camera-in-hand is given below [24]·

y1
y2

¸
= B2

µ·
x1
x2

¸
−
·
xo1
xo2

¸¶
(10)

where y(t) = [ y1(t) y2(t) ]
T ∈ R2 represents the image-space po-

sition of an object, x(t) = [ x1(t) x2(t) ]
T ∈ R2 represents the
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task-space position of the end-effector, xo(t) is given in (8), and
B2(q) ∈ R2×2 denotes a scaled rotation matrix. The scaled rota-
tion matrices B1 and B2(q) given in (8), (9), and (10), are defined as
follows

Bi = AiRi ∀i = 1, 2 (11)

where Ai ∈ R2×2 denotes a diagonal, positive-definite, constant ma-
trix defined as follows

Ai =

·
αi1 0
0 αi2

¸
∀i = 1, 2 (12)

where αi1, αi2 ∈ R1 are positive constants defined as follows

αi1 = βi1
λi

zi
αi2 = βi2

λi

zi
∀i = 1, 2 (13)

where βi1, βi2 ∈ R1 denote unknown constant scale factors (in pix-
els/m) for the i-th camera, λi ∈ R1 denotes the constant unknown
focal length of the i-th camera, zi ∈ R1 represents the constant un-
known distance from the i-th camera’s optical center to the task-space
plane, and Ri(·) ∈ R2×2 is a rotation matrix defined as

Ri(·) =
·
cos (·) sin (·)
− sin (·) cos (·)

¸
. (14)

The counterclockwise rotation angle of the image-space coordinate
system with respect to the task-space coordinate system, denoted by
θ ∈ R1, is defined as follows for the fixed camera configuration

θ = θ1 (15)

where θ1 ∈ R1 denotes a constant unknown angle, and is defined as
follows for the camera-in-hand configuration

θ(t) = θ2 +
2X
i=1

qi(t) (16)

where qi(t) denotes the position of the i-th link of the robot manip-
ulator and θ2 ∈ R1 is the unknown constant angle between the end-
effector and the camera-in-hand. Hence, the overall rotation matrix
for the camera-in-hand configuration can be written in the following
form

R2(θ) = R2

Ã
θ2 +

2X
i=1

qi

!
= R2(θ2)R2 (q1, q2) . (17)

Property 4: The following constant scaled rotation matrix B̄ ∈ R2×2

B̄ = A2R2(θ2) (18)

where A2 and R2(θ2) were defined in (12), (14), and (17), satisfies
the following property

ζT B̄ζ = ζT
µ
B̄ + B̄T

2

¶
ζ ∀ζ ∈ R2. (19)

Provided the following inequality is valid

cos (θ2) >

¯̄̄̄
β21 − β22
β21 + β22

¯̄̄̄
(20)

where θ2,β21,β22 are given in (13) and (16), the symmetric matrix
B̄ + B̄T will be positive-definite (proof available upon request).
Assumption 3: Both the fixed camera and the camera-in-hand are
assumed to be mounted such that the image plane of each camera is
parallel to each other and to the robot’s plane of motion, and that
images can be captured by both cameras throughout the entire robot
workspace.
Assumption 4: The task-space position of an object, denoted in (8)
as xo(t), is assumed to remain in the view of the cameras, and the
image-space trajectory of the object is assumed to be bounded (i.e.,
yo(t), ẏo(t) ∈ L∞).
Assumption 5: The absolute value of the unknown camera parame-
ters α1, α2, O1, O2, Oo1, Oo2 are assumed to be bounded by known
positive bounding constants.
Remark 2: With respect to (20), note that

0 ≤
¯̄̄̄
β21 − β22
β21 + β22

¯̄̄̄
< 1, (21)

and that the condition on θ2 can be written as θ2 ∈ {− |θc| , |θc|}
where θc is determined from a given set of values for β21 and β22.
If the camera’s scale factors have the same value (i.e., β21 = β22),
then θc = 90◦. As the difference between the values of β21 and β22
increases, the ratio

¯̄̄
β21−β22
β21+β22

¯̄̄
→ 1, and hence, θc → 0◦. Since in most

camera systems β21 and β22 are similar values (i.e.,
¯̄̄
β21−β22
β21+β22

¯̄̄
<< 1,

and hence, θc >> 0◦), the condition given in (20) is not difficult to
satisfy in practice. Further note that no restrictions are placed on
the parameters of the fixed camera.
Remark 3: Note that the camera configuration illustrated in Fig-

ure 1 is motivated by the desire to eliminate the possibility of the ro-
bot end-effector occluding the object from the fixed camera. If knowl-
edge of the object’s geometry were given a priori and the object was
larger than the robot end-effector, then both the fixed camera and the
camera-in-hand could be mounted above the object. Also note that if
the potential for end-effector occlusion of the object is eliminated by
the aforementioned geometrical issues, a fixed camera solution could
be developed as an extension to the results given in [31]; however,
the advantages of using the camera-in-hand (e.g., higher resolution
measurement that may result in greater robotic precision) would be
lost.

C. Object Motion Model

The task-space trajectory can be represented by an object motion
model [9]. For example, the object position and its time derivative
for a straight line, circle, and the so-called “Figure 8” trajectories are
given as follows [9]·

xo1
xo2

¸
=

·
xo1
xo2

¸
·
ẋo1
ẋo2

¸
=

·
vx1
vx2

¸
 Straight Line (22)

·
xo1
xo2

¸
=

·
r1 cos (ωt) + cx
r1 sin (ωt) + cy

¸
·
ẋo1
ẋo2

¸
=

· −xo2ω + ωcy
xo1ω − ωcx

¸
 Circle (23)

·
xo1
xo2

¸
=

·
r1 cos (ωt)
r2 sin (2ωt)

¸
·
ẋo1
ẋo2

¸
=

 − r21ω

2r2

xo2
xo1

2r2ω
r21

x2o1 −
r21ω

2r2

x2o2
x2o1


 Figure 8 (24)

where vx1, vx2 ∈ R1 denote the constant, unknown linear velocity
of the object, r1, r2, cx, cy ∈ R1 are positive unknown constants, and
ω ∈ R1 denotes the constant, unknown angular velocity of the object.
With regard to the object motion model, the following assumption is
made.
Assumption 6: The absolute value of the object motion parameters
(e.g., vx1, vx2,ω, r1, r2, cx, cy) are assumed to be upper bounded by
known, positive constants.
Motivated by the desire to rewrite ẋo(t) in terms of measurable

signals, we multiply (8) by −B−11 and then rearrange the resulting
expression as follows·

xo1
xo2

¸
= −B−11

µ·
yo1
yo2

¸
− p

¶
. (25)

After substituting (25) into (22), (23), and (24) and utilizing As-
sumptions 5 and 6, an upper bound for ẋo(t) can be formulated as
follows

kẋo(t)k ≤ ρ1 (yo) + ρ2 (26)

where ρ1 (yo) ∈ R1 is a known, positive bounding term dependant on
yo(t), and ρ2 ∈ R1 is a known, positive constant bounding term.

III. Control Development

The control objective for this paper is to force the end-effector of
a robot manipulator to track the time-varying position of an object.
To quantify this objective, we define the task-space position tracking
error e(t) ∈ R2 as follows

e = x− xo (27)
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where xo(t) and x(t) are given in (8) and (10), respectively. After
taking the time derivative of (27), the following expression can be
obtained

ė = Jq̇ − ẋo (28)

where (5) and (6) have been utilized. After some algebraic manipu-
lation, (28) can be rewritten as follows

ė = −Jη − ẋo + Ju (29)

where η(t) ∈ R2 is defined as

η = u− q̇ (30)

and u(t) ∈ R2 is an auxiliary control signal. Based on the open-
loop error system for e(t) given in (29) and the subsequent stability
analysis, we design the control signal u(t) as follows

u = −J−1
³
kc + kn1 (ρ1 (yo) + ρ2)

2
´
RT2 (q1, q2) y (31)

where kc, kn1 ∈ R1 are positive constant control gains, R2 (q1, q2)
was defined in (17), and ρ1 (yo) and ρ2 were given in (26). After sub-
stituting (31) into (29) for u(t), the following expression is obtained

ė = −Jη − ẋo −
³
kc + kn1 (ρ1 (yo) + ρ2)

2
´

(32)

·RT2 (q1, q2) B̄R2 (q1, q2) e

where (10), (11), (17), (18), and (27) were utilized.
To determine the closed-loop error system for η(t), we take the

time derivative of (30) and premultiply the resulting expression by
M(q) as follows

M η̇ = Y φ− Vmη + Td − τ (33)

where (1) and (30) were utilized and the linear parameterization
Y (u, u̇, t)φ is defined as follows

Y φ =Mu̇+ Vmu+G+ F (34)

where Y (u, u̇, t) ∈ R2×p denotes a measurable regression matrix and
φ ∈ Rp denotes a vector of unknown constant parameters. Based on
the expression given in (33) and the subsequent stability analysis, we
design the control torque input as follows

τ = Y φ̂+ kη + kn2ζ
2
Jη +

ρ23η

ρ3 kηk+ ε
(35)

where φ̂ is a constant best-guess estimate of the constant unknown
parameters given in φ, where k, kn2, ε ∈ R1 are positive constant con-
trol gains, and ρ3(u, u̇, t) ∈ R1 is a known positive bounding function
that is defined as follows

ρ3 ≥
°°°Y φ̃°°° + kTdk (36)

where φ̃ ∈ Rp denotes the mismatch between the constant unknown
parameters and the constant best-guess estimate as shown below

φ̃ = φ− φ̂. (37)

After substituting (35) into (33) for τ(t), we obtain the closed-loop
error system for η(t) as follows

M η̇ = −Vmη + Y φ̃+ Td − kη −
ρ23η

ρ3 kηk+ ε
− kn2ζ2Jη. (38)

Remark 4: Based on the fact that φ̂ is a constant best-guess esti-
mate of the constant unknown parameters given in φ, it is clear that
φ̃ ∈ L∞ ∀t.
Remark 5: For the special case of the straight line motion de-

scribed by (22), ẋo(t) is independent of yo(t), and hence, the bound
given in (26) simplifies to the following inequality

kẋo(t)k ≤ ρ2. (39)

Based on the control input given in (31) and (35) and the modified
bound given in (39), it is evident that information from the fixed

camera is not utilized, and hence, the object tracking problem can be
solved using only the camera-in-hand for this special case.
Remark 6: If an object motion model is not available, then the

open-loop dynamics for e(t) given in (29) can be written as follows

ė = −Jη +B−11 ẏo + Ju (40)

where the time derivative of (25) has been utilized. Based on the
open-loop error dynamics given in (40), the control input u(t) given
in (31) can be redesigned as follows

u = −J−1
³
kc + kn1 (ζB ẏo)

2
´
RT2 (q1, q2) y (41)

where ζB ∈ R1 is a positive bounding constant defined as follows°°°B−11 °°° ≤ ζB . (42)

The controller given in (35) and (41) would result in exactly the
same stability result that would be obtained using (31), (35), and the
object motion model; however, since the controller given in (41) is
dependant on ẏo(t), it is clear from (34) and (35) that Y2(u, u̇, t) and
τ(t) would require that ÿo(t) be measureable. Hence, by exploiting
an object motion model, the requirement for ÿo(t) to be measurable
is eliminated.

IV. Stability Analysis

Theorem 7: Provided that the camera space parameters satisfy
the inequality given in (20), UUB position tracking is achieved in the
sense that

ke(t)k ≤
r

λ2
λ1
kΨ(0)k2 exp

³
−λ3

λ2
t
´
+ λ4λ2

λ3λ1

³
1− exp

³
−λ3

λ2
t
´´

(43)
where Ψ(t) ∈ R4 is defined as follows

Ψ ,
£
eT ηT

¤T (44)

and λ1, λ2, λ3, λ4 ∈ R1 are positive bounding constants defined as
λ1 =

1
2
min {1,m1} , λ2 =

1
2
max {1,m2} ,

λ3 = min
n
k, kcγB − 1

4kn2

o
, λ4 =

³
ε+ 1

4kn1γB

´ (45)

where m1 and m2 are given in (2), kc, kn1 are given in (31), k, kn2
and ε are given in (35), and γB ∈ R1 is a positive bounding constant
defined as

γB = λmin

½
B̄ + B̄T

2

¾
> 0, (46)

where B̄ was defined in (18), and λmin{·} denotes the minimum eigen-
value of a matrix. To ensure that λ3 is positive, kc and kn2 must be
selected to ensure that the following inequality is satisfied

4kckn2 >
1

γB
. (47)

Proof: To prove Theorem 7, we define a non-negative function
V (t) ∈ R1 as follows

V =
1

2
eT e+

1

2
ηTMη, (48)

which can be lower and upper bounded according to the following
inequalities

λ1 kΨk2 ≤ V ≤ λ2 kΨk2 (49)

where Ψ(t),λ1, and λ2 were defined in (44) and (45). After taking
the time derivative of (48) and substituting (32) and (38) into the
resulting expression, we obtain the following expression

V̇ = −
³
kc + kn1 (ρ1 (yo) + ρ2)

2
´

(50)

·
·
eTRT2 (q1, q2)

µ
B̄ + B̄T

2

¶
R2 (q1, q2) e

¸
− eT Jη

−eT ẋo − kηT η + ηT (Y φ̃+ Td −
ρ23η

ρ3 kηk+ ε
− kn2ζ2Jη)

where (3) and (19) were utilized. Based on the fact that B̄ + B̄T

is positive-definite and symmetric, we can invoke the Raleigh-Ritz
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Theorem [22], to develop a lower bound for the bracketed term of
(50) as follows

γB kek2 ≤ eTRT2 (q1, q2)
µ
B̄ + B̄T

2

¶
R2 (q1, q2) e (51)

where the fact that

kR2 (q1, q2) ek2 = kek2

was utilized, and γB was defined in (46). After utilizing (7) and (36),
an upper bound for (50) can be developed as follows

V̇ ≤ −kcγB kek2 − k kηk2 + [ζJ kek kηk (52)

−kn2ζ2J kηk2
i
+

"
ρ3 kηk−

ρ23 kηk2
ρ3 kηk+ ε

#
+
h
kek kẋok− kn1γB (ρ1 (yo) + ρ2)

2 kek2
i
.

After completing the squares on the bracketed terms in (52), we can
formulate the following upper bound

V̇ ≤ −
µ
kcγB −

1

4kn2

¶
kek2 − k kηk2 + ε+

1

4kn1γB
. (53)

Provided the gain condition given in (47) is satisfied, we can develop
an upper bound for (53) as follows

V̇ ≤ −λ3 kΨk2 + λ4 (54)

where Ψ(t), λ3, and λ4 were defined in (44) and (45). From the
upper bound on V (t) given in (49), we can further upper bound V̇ (t)
as shown below

V̇ ≤ −λ3

λ2
V + λ4. (55)

The differential inequality of (55) can now be solved to yield the
following expression

V (t) ≤ V (0) exp
µ
−λ3

λ2
t

¶
+

λ4λ2

λ3

µ
1− exp

µ
−λ3

λ2
t

¶¶
. (56)

Given (48) and (56), it is clear from (44) that Ψ(t), e(t), η(t) ∈ L∞.
Based on the fact that e(t) ∈ L∞, we can utilize (10-17) and (27)
to prove that y(t) ∈ L∞; hence, from (31), and the assumption that
yo(t) ∈ L∞, we can conclude that u(t) ∈ L∞. Based on the as-
sumption that ẏo(t) ∈ L∞ and the fact that e(t), η(t), u(t) ∈ L∞,
we can utilize (29) and (30) to prove that ė(t), q̇(t) ∈ L∞. Note
that since q(t) only appears in the camera model and control de-
velopment as the argument of bounded trigonometric functions, we
cannot show that q(t) ∈ L∞; however, all signals in the manipulator
kinematics/dynamics and the control remain bounded independent
of the boundedness of q(t). Based on the fact that ė(t), q̇(t) ∈ L∞,
we can take the time derivative of (10) to prove that ẏ(t) ∈ L∞;
hence, by taking the time derivative of (31) and utilizing Assump-
tion 1 and the assumption that ẏo(t) ∈ L∞, we can now prove that
u̇(t), Y (u, u̇, t), τ(t) ∈ L∞. Based on the fact that all the closed-loop
signals remain bounded, we can now utilize (49), to formulate an
upper bound for Ψ(t) as follows

kΨ(t)k ≤
r

λ2
λ1
kΨ(0)k2 exp

³
−λ3

λ2
t
´
+ λ4λ2

λ3λ1

³
1− exp

³
−λ3

λ2
t
´´
.

(57)
Based on (44) and (57), we can prove that the end-effector position
tracking error e(t) can be bounded by the expression given in (43).
¤

V. Simulation Results

The controller developed in the previous section was simulated
based on the following image space (for the fixed camera) trajectory·

yo1
yo2

¸
=

·
16 + 10 sin(0.1t)
14 + 10 cos(0.1t)

¸
. (58)

The camera-in-hand and fixed cameras that were utilized to view the
object system are modeled by (8-17) with the following parameters

Oo1 = 0.2 m, Oo2 = 0.1 m, O1 = O2 = 0 m,
βij = 1024, λi = 0.08 m, ∀i, j = 1, 2

z1 = 1.2 m, z2 = 3.0 m, θ1 = 30 deg, θ2 = 10 deg
(59)

The task-space end-effector position and velocity for the fixed and
the in-hand camera were initialized as follows

x(0) = [0.4618, 0.4398]T m ẋ(0) = [0, 0]T m/sec. (60)

The camera-in-hand was simulated using the dynamics for a two-link,
direct-drive, horizontally-planar, Integrated Motion Inc. manipula-
tor.
After tuning the controller given in (31) and (35) the following

control gains were selected

ks1 = 10.0, ks2 = 22.5, ρ = 5, ε = 0.02

where ks1, ks2 ∈ R1 are defined as follows

ks1 ≥ kc + kn1
¡
ζBζy

¢2
ks2 ≥ k + kn2ζ2J (61)

to facilitate the tuning process. The best-guess estimates for φ, de-
noted by φ̂, were selected as follows

φ̂ = [ 4 0.2 0.25 5.0 1.1 ]T .

The resulting performance of the controller is described by Figures
2-4.
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Fig. 2. Actual task-space end-effector trajectory
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Fig. 3. Task-space tracking errors
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Fig. 4. Control torque inputs to the link actuators

VI. Conclusion

In this paper, we proved that the end-effector of a robot manip-
ulator can achieve UUB tracking of an object despite the facts that
the object’s task-space trajectory is not directly measurable due to
parametric uncertainty in the camera calibration parameters (i.e.,
the relationship between the image-space and the task-space con-
tains parametric uncertainty), and the object motion model and that
parametric uncertainty exists in the dynamic model of the robot ma-
nipulator. To address the relative velocity issue that is present when
an uncalibrated camera-in-hand configuration is utilized, we utilized
an interesting cooperative camera configuration and exploited an ob-
ject motion model to eliminate the need for image-space acceleration
measurements. The main advantages of this approach are that: (i)
an uncalibrated fixed camera can be mounted to enable a large field-
of-view, (ii) the fixed camera can provide relative velocity informa-
tion (between the object and the end-effector) to the controller, and
(iii) an uncalibrated camera-in-hand can be utilized to provide close-
up, high resolution information about the object’s motion. Future
work will target investigating potential advantages of other coopera-
tive camera configurations and demonstrating the performance of the
proposed controller in real-time using a high-speed (e.g., capable of
capturing 955 frames per second) camera/robot testbed.
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