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Characteristics of Repository 
Criticality Control



Actinide Half-Lives and Geochemistry Imply That 
Repository Criticality Is Controlled by 233U and 235U

(Major Actinides [239Pu, etc.] Decay to Uranium Fissile Isotopes)
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Uranium Geochemistry Destroys and 
Reconstitutes Natural and Repository Uranium 

“Ore” Deposits Over Time
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Nature Has Created Nuclear Reactors When the 
Fissile Assay Exceeds 1.3 wt % 235U Equivalent 
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Nuclear Criticality Can Occur with Enrichments 
Near 1 wt% in Engineered Systems
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Criticality Is Possible in a 
Geological Repository

• LWR SNF  assay is  ~1.5 wt% 235U in 
238U (equivalent assay)

• Higher actinides in HLW  decay to 
233U/235U with an ultimate assay that 
is significantly higher than that of 
LWR SNF

• Navy SNF and some DOE SNF 
contain high-enriched uranium 



Only Three Means Exist To Eliminate the 
Potential for Nuclear Criticality
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Three Methods Exist To Ensure That Nuclear 
Criticality Will Not Occur in a Repository 
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Adding Depleted Uranium (DU) To the 
Waste Package Has Major Advantages 

As a Criticality Control Strategy

• Avoids the need to process waste (Option I)
• Minimizes required knowledge of future 

migration of fissile materials from the waste 
package (Option III)

• Excess DU ( a potential waste) is available
• The strategy uses the same strategy that 

prevents nuclear criticality in natural 
uranium ore bodies



Cermet Waste Packages



Characteristics and Uses of Cermets in 
Waste Packages for PWR SNF
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DUO2-Steel Cermets Are a Preferred 
Form of Uranium in a Repository

• The repository is primarily designed to 
accept SNF uranium in the form of  UO2
− No chemical compatibility issues with DUO2

− Massive knowledge base on behavior of UO2 in the 
repository environment

• Cermets minimize operational issues
− No exposed uranium
− Same metals of construction

• Significant cermet experience
− Eleven reactors operated on cermet fuels
− High-volume production of non-nuclear cermets



500,000 Tons of Excess DU Is Available
(Cermets Could Consume >50% of the Inventory)



Cermet Criticality Control Strategy 



The Criticality Strategy Is To 
Overwhelm the Potential for 

Criticality with Depleted Uranium

• Shielded package has 3+ tons of depleted 
uranium per ton of SNF

• Average package enrichment: <<1%
• Quantity of cermet (depleted uranium) can 

be varied



Degradation Over Time Will Physically Mix 
and Then Isotopically Mix Depleted Uranium 

with Other Uranium Isotopes
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Conclusions
• Multiple potential repository criticality 

control strategies exist
• Addition of depleted uranium avoids the 

need to predict long-term and far-field 
repository behavior to ensure criticality 
control

• This use of DU could consume one-half to 
all of the potentially excess DU inventory

• Further investigation is required to 
evaluate costs and benefits



Additional Information



Four Benefits of Using DUO2 in a 
Repository Waste Package

• Reduce potential for long-term nuclear 
criticality in the repository (today’s talk)

• Reduce radionuclide release rates from 
SNF WPs

• Provide WP shielding
• Dispose of excess DU
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(Major Actinides [239Pu, etc.] Decay to Uranium Fissile Isotopes)
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Uranium Can Dissolve and Precipitate in the 
Repository Near-Field Environment
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The Earth Initially Had a Chemically Reducing 
Environment with Little Uranium Migration
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The Earth’s Surface Is Oxidizing, But Chemically 
Reducing Conditions Exist Underground
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The Combination of Oxidizing and Reducing 
Environments Creates Mechanisms To 

Concentrate Uranium
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Roll Front Uranium Deposit
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Enriched Uranium Is Destroyed More Rapidly by 
Isotopic Exchange Than by 235U Decay
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Methods To Demonstrate That 
Repository Criticality Will Not Occur

• Isotopically dilute fissile materials with DU
• Surround fissile materials with DU and 

show isotopic dilution as the package 
degrades (concept described herein)

• Dilute 235U during uranium migration by 
isotopic exchange with 238U in rock
− Model SNF and WP degradation
− Follow 235U migration over time
− Show that criticality does not occur



Cermet Waste Packages Can 
Minimize Long-Term Repository 

Nuclear Criticality Issues

• Fissile assay of commercial SNF is about 
1.5 wt % 235U equivalent

• Natural reactors (Oklo, Gabon) have 
occurred at uranium assays of ~1.3 wt %

• Cermets are a practical means of adding 
DU to the waste package to decrease 
fissile content to assured safe levels



Isotopic Dilution of SNF Uranium (Including Decayed 
239Pu) with DU Occurs with SNF/Cermet Degradation
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A Cermet Is a Ceramic-Metal 
Composite Material

• Ceramic and metal are separate phases
• Properties are between those of ceramics 

and metals
• Large quantities of some cermets are 

produced (>105 t/year)
• A cermet for this application includes

− Ceramic: DUO2

− Metal: steel (the continuous phase which is 35–50 vol % 
of the cermet)

• Multiple production techniques exist
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Spin Casting of Cermet Cask Body
(Future Option)
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A DUO2-Steel Cermet Is Compatible 
with the WP 

• Chemical compatibility is required
− Cermet steel is compatible with a steel WP
− DUO2 is the same chemical form as is SNF UO2

• Operations are simplified because DUO2 is 
contained in steel (no contamination)

• A cermet allows a single material to meet 
multiple WP functional requirements
− Structural strength (not possible with DUO2)
− Improved repository performance



Shielding Effectiveness (R/h) of Different Materials
(Source Term from 21-PWR Yucca Mountain Waste Package)
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Example: Cermet-Shielded 21-PWR 
Yucca Mountain Waste Package

(>10,000 Required; Repository Metal of Choice Is 316 SS)
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Cermets Have Advantages as 
Compared with Uranium Metal

• Better physical properties 
− Corrosion resistance
− Adjustable properties

• U.S. Nuclear Regulatory Commission 
acceptance for repository applications and 
decommissioned-cask disposal
− Uranium oxides acceptable
− Unresolved issues with uranium metal



Sandwich Construction of Cermets

• Radioactive uranium is contained by 
exterior steel layers (no contamination)

• Construction maximizes strength, with 
strongest components on the outside
− Interior steel layer
− Cermet 
− Exterior steel layer



Cermets Can Be Made of Excess Materials:
Disposal Costs Can Be Avoided

• Depleted uranium (>500,000 tons)
• Recycled steel (~2,000,000 tons)

− From decommissioning of uranium enrichment 
and other nuclear facilities (low radioactivity)

− Uncertainty of unlimited public recycle, recycle 
for nuclear applications accepted

− Availability of large quantities of nickel, 
stainless steel, and other expensive metals
• Allows use of high-performance “low-cost” alloys
• Simplified manufacturing and licensing for ductile, high-

performance alloys



Observations
• DUO2-steel cermets can potentially 

replace structural, shielding, and basket 
components of casks and waste packages

• Multiple potential advantages exist
− Shielding
− Improved repository performance
− Disposal of excess materials (DU and steel)

• Further examination of cermets is 
warranted for transport, storage, and 
disposal packages


