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INTRODUCTIONINTRODUCTION

• Ion transport in biological membranes. 

• Particle aggregation and adsorption.

• Electrochemical kinetics.

Importance of Electrical Double Layer (EDL):

Applications of Nanostructured Materials:

• Hydrogen storage. 

• Ultracapacitors: store electrical energy in EDL.

• Electrosorption.









=

kT
zezeN

dx
d ψ

ε
ψ

sinh
2 0

2

2

Boundary conditions

0at   and   0
d

d
=== x

x mψψ
ψ

2
at

w
xd ±== ψψ

Surface Charge Density in a Single Pore
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ELECTRICAL DOUBLE LAYER FORMATION

Poisson-Boltzmann (P-B) Equation   



PORE-SIZE DISTRIBUTION AND TOTAL CAPACITY
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ELECTROSORPTION EXPERIMENTS
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COMPARISON BETWEEN MODEL PREDICTIONS 
AND EXPERIMENTAL DATA
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NaF Electrosorption by Carbon Aerogel (440 m2 /g)

Yang, K.-L.; Ying, T.-Y.; Yiacoumi, S.; Tsouris, C.;  Vittoratos, E.S. Langmuir 2001, 17, 1961.

C1 = 20 µµF/cm2, φφecm = 0.13 V



COMPARISON BETWEEN MODEL PREDICTIONS 
AND EXPERIMENTAL DATA 
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DOES HIGHER SURFACE AREA TRANSLATE 
TO HIGHER TOTAL CAPACITY? 
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COMPARISON BETWEEN P-B EQUATION 
AND MOLECULAR MODELING

Limitations of P-B Equation:

• Ion-size effect is ignored.

• Mean-field approximation is only applicable for low ion 
concentration and low surface charge density.

Molecular Modeling - Grand Canonical Monte Carlo (GCMC):

• Ion-size effect is considered.

• Self-consistent field is calculated by dipole sheets.



GRAND CANONICAL MONTE CARLO 
SIMULATIONS

Insertion: create a ghost ion.

Deletion: delete a randomly chosen ion.

Move: move particles inside the box to determine the 
minimum energy.

Grand Canonical Monte Carlo 
(GCMC) — instead of fixing the 
number of particles, one can fix the 
chemical potential.

deletion

insertion

δ



GCMC FOR ELECTRICAL DOUBLE-LAYER 
PROBLEMS

Chemical potential, µµ

co-ion counter-ion

The long-range Coulombic force is handled by charged sheets.

charged sheet
Charged surface



ION DISTRIBUTION AT HIGH CONCENTRATION 
AND HIGH SURFACE CHARGE DENSITY

For a 2-2 electrolyte at  0.05 M  (C0); 
surface charge density = 2.18 µµC/cm2 .

For a 1-1 electrolyte at 1.0 M  (C0); 
surface charge density = 8.96 µµC/cm2 .
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ION DISTRIBUTION IN A SLIT PORE

For a 1-1 electrolyte at  0.01 M (C0); 
surface charge density = 1.24 µµC/cm2;
separation distance = 20 Å.

For a 1-1 electrolyte at  0.01 M (C0); 
surface charge density = 1.24 µµC/cm2;
separation distance = 60 Å.
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IMPORTANCE OF MOLECULAR 

WATER IN MICROPORES

+

solvent, cation, and anion.

• There is usually a layer of water 
strongly adsorbed on the surface.

• Immobilized water molecules 
behave very differently from 
those in the bulk phase.

• Hydration changes the effective 
diameters of ions. 



FLUCTUATING CHARGE MODEL (FQ)
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MOLECULAR WATER BETWEEN CHARGED WALLS
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EDL MODEL WITH MOLECULAR WATER

Sodium (40)

Flouride (10)

Water (535)

Non-electrified surfaceElectrified surface

σσ = - 1.2 C/m2 40 Å
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SUMMARY

• A highly-porous, nanostructured carbon aerogel is used to 
remove ionic contaminants from aqueous solutions.

• An EDL model based on the P-B equation is developed to 
predict the electrosorption capacity of nanostructured carbon 
aerogel with different pore-size distributions.

• Molecular modeling (GCMC) is more accurate in 
determining the distribution of ion in the EDL for high 
electrolyte concentration, high surface charge density, and 
narrow pores.


