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INTRODUCTION

| mportance of Electrical Double Layer (EDL):

 |on transport in biological membranes.
 Particle aggregation and adsorption.

» Electrochemical kinetics.

Applications of Nanostructured Materials:

-,

* Hydrogen storage.

« Ultracapacitors. store electrical energy in EDL.

« Electrosorption. *(




ELECTRICAL DOUBLE LAYER FORMATION

Poisson-Boltzmann (P-B) Equation
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PORE-SIZE DISTRIBUTION AND TOTAL CAPACITY
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ELECTROSORPTION EXPERIMENTS
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COMPARISON BETWEEN MODEL PREDICTIONS
AND EXPERIMENTAL DATA

NaF Electrosorption by Carbon Aerogel (440 m?/g)
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COMPARISON BETWEEN MODEL PREDICTIONS
AND EXPERIMENTAL DATA

NaF Electrosorption by Carbon Aerogel (691 m?/qg)
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DOESHIGHER SURFACE AREA TRANSLATE
TOHIGHER TOTAL CAPACITY?
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COMPARISON BETWEEN P-B EQUATION
AND MOLECULAR MODELING

Limitations of P-B Equation:

e |on-size effect isignored.

 Mean-field approximation is only applicable for low ion
concentration and low surface charge density.

Molecular Modeling - Grand Canonical Monte Carlo (GCMC):

* |on-size effect is considered.
o Self-consistent field is calculated by dipole sheets.



GRAND CANONICAL MONTE CARLO
SIMULATIONS

Insertion
Grand Canonical Monte Carlo ® o O _
(GCM C) — instead of fixing the © -
number of particles, one can fix the d/, o
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chemical potential. O
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deletion

|nsertion: create a ghost ion.
Deletion: delete arandomly chosen ion.

Move: move particles inside the box to determine the
minimum energy.



GCMC FOR ELECTRICAL DOUBLE-LAYER

PROBLEMS
Charged surface
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|ON DISTRIBUTION AT HIGH CONCENTRATION
AND HIGH SURFACE CHARGE DENSITY
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ION DISTRIBUTION IN A SLIT PORE
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IMPORTANCE OF MOLECULAR
WATER IN MICROPORES

 Thereisusually alayer of water
strongly adsorbed on the surface.

« Immobilized water molecules
behave very differently from
those in the bulk phase.

« Hydration changes the effective
diameters of ions. solvent, cation, and anion.
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FLUCTUATING CHARGE MODEL (FQ)

Dipole Moment Distribution
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MOLECULAR WATER BETWEEN CHARGED WALLS
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EDL MODEL WITH MOLECULAR WATER

Electrified surface Non-dectrified surface
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SUMMARY

A highly-porous, nanostructured carbon aerogel is used to
remove ionic contaminants from agueous sol utions.

 AnEDL model based on the P-B eguation is developed to

predict the electrosorption capacity of nanostructured carbon
aerogel with different pore-size distributions.

* Molecular modeling (GCMC) is more accurate in
determining the distribution of ion in the EDL for high

el ectrolyte concentration, high surface charge density, and
narrow pores.



