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Abstract

When estimating the dense motion field of a video se-
quence, if little is known or assumed about the content, a
limited constraint approach such as optical flow must be
used. Since optical flow algorithms generally use a small
spatial area in the determination of each motion vector, the
resulting motion field can be noisy, particularly if the input
video sequence is noisy. If the moving subject is known to be
a face, then we may make use of that constraint to improve
the motion field results. This paper describes a method for
deriving dense motion field data using a face tracking ap-
proach. A face model is manually initialized to fit a face at
the beginning of the input sequence. Then a Kalman filter-
ing approach is used to track the face movements and suc-
cessively fit the face model to the face in each frame. The 2D
displacement vectors are calculated from the projection of
the facial model, which is allowed to move in 3D space and
may have a 3D shape. We have experimented with a pla-
nar, cylindrical, and Candide face model and have found
they work similarly. In this paper the resulting motion field
is used in the multiple frame restoration of a face in noisy
video.

1. Introduction

The motivation for this work is to perform video restora-
tion in forensic applications. Often in surveillance video,
it is necessary to remove noise from input video. This is
particularly the case for video involving faces, because it
is often necessary to improve the quality of an image of a
perpetrator to determine suspects.

Frame averaging is a simple and effective tool for reduc-
ing noise in video; however, when motion is present it will
cause blurring due to the misregistration of images. Motion
compensation of individual frames to register them greatly
reduces blurring caused by frame averaging. Unfortunately,

a major problem with motion compensation of noisy video
is that the quality of the motion estimation is affected by the
noisy input images.

In this paper, we show that we are able to accurately
and robustly calculate motion data of a moving face from
noisy video by using a model-based approach. We present a
method for motion estimation that uses facial feature track-
ing and a face surface model to robustly and accurately es-
timate the actual motion data. Once the motion data are
obtained, the video frames are warped so that they are reg-
istered. Lastly, frame averaging can be performed to fuse
frames to produce a single image with reduced noise.

2. Our Approach

2.1 Overview

This model-based approach takes advantage of the fact
that we are interested solely in a face. Five rectangular fa-
cial regions are tracked using block-matching. These rect-
angular regions are shown in Figure 1. These regions are
areas that have a large amount of information content. This
makes the block matching very robust to noise since a large
number of pixels are used, and the particular regions are
very descriptive.

The spatial coordinates of the centers of the feature rect-
angles are used as the observations in an Extended Kalman
Filter [4] that tracks the position and orientation of the fea-
ture rectangles as a group in 3D space. The resulting track-
ing data of position and orientation can be used to control
any wireframe model. An example is the Candide wire-
frame face model [1], which is shown in Figure 2. The
wireframe model is used to generate a motion displacement
vector for each pixel in the image. In this work, displace-
ments are generated from one frame to its following frame.
This allows us to continually average frames as we move
forward in time through the video.



Figure 1. Facial feature rectangles

Figure 2. Candide model used

2.2 Facial feature block matching

A graphical user interface is used to initialize the facial
feature blocks. The user manually alters the position, orien-
tation, and scale of the feature rectangles so that they cover
the features of interest: both eyes, the nose, and both cor-
ners of the mouth.

Since the feature rectangles are allowed to move in 3D
space, they may not project onto the image space as rectan-
gles. We are assuming orthographic projection within the
facial model, so the rectangles become parallelograms. We
find the smallest rectangles in the the image space which
completely contain these parallelograms. Those rectangles
are used for the block matching within the images. The
miniumum Mean Absolute Difference (MAD) criterion [6]
is used as a difference measure. That is we minimize

MAD(q, r) =
1

MN

∑
(m,n)∈B

|f(m + q, n + r, k + 1) − f(m,n, k)| (1)

within the search window, wheref are video frames in-
dexed by the integer time indexk, mandn are integer spatial
indices,q andr are integer displacment vectors, andB is the
rectangular region being matched. The search region forq
andr is limited to another rectangular region. The location
of that rectangular search region is a function of the original
block location, so the search region changes as the feature
blocks move in space and time.

2.3 Extended Kalman Filter

The Extended Kalman Filter tracks the following state
variables:

s =
[

x y q0 q1 q2 q3

]T
, (2)

wherex andy are the spatial spatial coordinates of the fa-
cial model, and the remaining variables define the 3D ori-
entation of the candide model using quaternions [4]. Note
that while the model is allowed to change orientation in 3D
space, thezdimension is otherwise ignored. Also, scaling is
fixed (i.e. we are assuming orthographic projection). Orig-
inally, scaling was considered, but it made the algorithm
very unstable. Therefore, we set the scale during initial-
ization, and assume that the face moves very little in thez
direction during the sequence.

The equations used are: the state prediction equation,

ŝb(k) = Φ(k, k − 1)̂sa(k − 1), (3)

the error covariance prediction equation,

Pb(k) = Φ(k, k − 1)Pa(k − 1)Φ(k, k − 1)T ,+Q(k) (4)

the Kalman gain equation,

G(k) = Pb(k)HT (k){H(k)Pb(k)HT (k) + R(k)}−1, (5)

the state update equation,

ŝa(k) + G(k){w(k) − H(k)̂sb(k)}, (6)

and the error covariance update equation,

Pa(k) = Pa(k) − G(k)H(k)Pbk, (7)

wheres is the state vector,
w is the observation vector,
R is the observation covariance matrix,
Q is the state noise covariance matrix,
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P is the state noise covariance matrix,
G is the Kalman gain,
Φ is the state update matrix,
and H is the observation matrix of the linearized system
obtained by

H(k) =
h(s(h))
s(k)

∣∣∣∣
s=ŝb(k)

. (8)

Φ is set to the identity matrix to assume constant velocity.
The initial value ofs is set according to the manual initial-
ization of the facial model.w is a ten-element vector con-
taining thex andy coordinates of the facial feature tracking
rectangles.

2.4 Generation of Dense Motion Field

The facial surface model is used to convert face tracking
information into a dense motion field. This is the inverse of
what was done in work by Basu et al [2] in which they use
an optical flow algorithm to calculate a dense motion field,
and then they iterate to determine the positions and orien-
tations of a 3D facial model that could produce the dense
motion field. The benefit to their approach is that face track-
ing can be achieved without dependence on the presence of
all facial features. However, here we assume that the facial
features will be present, and we are using them as a robust
way to determine the position and orientation of the head.
Thus we are able to create a dense motion field even though
noise is present.

The generation of the dense motion field from the face
surface model assumes an orthographic projection. It is rea-
sonable to assume that within the limited depth change of
the face that there is little variation in scaling. The motion
field that we are seeking describes the displacement from
one frame to the next. That is

f(m,n, k) = f(m−u(m,n, k), n−v(m,n, k), k−1), (9)

whereu andv are real values containing the horizontal
and vertical motion displacements respectively. From the
above equation, we see that for a given pixel, the motion
vectors describe the location from where that pixel origi-
nated in the previous frame. The benefit of this form will be
described below.

The facial surface model can be any 3D shape repre-
sented by a wireframe mesh of triangular regions. For each
frame, we calculate the coordinates of each of the vertices
of the facial model wireframe. For each pixel of the given
frame we determine where it projects onto the wireframe
model using orthographic projection. If the given pixel does
not fall on the model, then we assume the motion for that
pixel is zero. If it projects onto a triangle in the mesh, we

use that plane and the knownx andy location of the pixels
to determine thezor depth component. If the pixel projects
to multiple triangles, as can happen with a 3D structure, the
projection point closest to the camera is used. Once this is
obtained, we find the 3D position of the point in the previ-
ous frame, and the difference is the 3D motion vector. Since
we are only concerned with the 2D motion vector, we per-
form orthographic projection which is simply removing the
Z component of the 2D motion vector.

2.5 Motion-compensated frame averaging

The motion compensation of frames is achieved by the
backward warping [3] of each pixel. Because of the way
the motion vectors are defined in 9, each pixel has a single
motion vector whose head is at that pixel and whose tail cor-
responds to location in the previous frame. The tail of the
motion vector does not necessarily correspond to an integer
pixel location; however, a source pixel is easily obtained by
bilinear interpolation of the four nearest pixels.

At each frame, we calculate the average of the current
frame and all preceding frames of interest. This is calcu-
lated recursively by continually warping the average image
one frame forward in time. That is we recursively calculate

f̂(m,n, k) =
1
k

f(m,n, k)

+
k − 1

k
f̂(m − u(m,n, k), n − v(m,n, k), k − 1), (10)

wheref̂ is the averaged frame.

3. Experiments and Results

We tested our approach on a sequence of 16 images. We
also used an implementation of an optical flow algorithm
for creating motion estimation data. The algorithm was de-
signed by Michael Black [3], and it is a robust extension to
the Horn-Schunck [5] optical flow algorithm. We will refer
to it hereafter as the robust optical flow algorithm.

If we apply both the candide model with face tracking
and the robust optical flow algorithm to the test sequence,
we find that both perform well, but it is apparent that the
robust optical flow approach performs slightly better result-
ing in a sharper fused image. However, we find that the
optical flow approach does not perform well when we artifi-
cially add Gaussian noise to the images to achieve a signal-
to-noise ratio of 2.1 dB. The first image in the noise se-
quence is shown in Figure 3, and the last image is in Figure
4. Although the robust optical flow algorithm has a spatial
smoothness constraint, it has trouble with the noise in the
image sequence. The result obtained from using the robust
optical flow algorithm is shown in Figure 5. As one can
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see, the noise in the video sequence has caused the motion
field generated from the robust optical algorithm to be noisy.
Thus the fused result gives the impression of a melted face.

Figure 3. First frame of original sequence with
noise added

Figure 4. Last frame of original sequence with
noise added

We used three different face surface models in our
model-based approach. Those are the Candide model, a
cylindrical model, and a planar model. The Candide and
cylindrical models are plotted together in Figure 6. The re-
sults for the different models are shown in Figures 7, 8, and
9.

The model-based approach is able to perform well and is
able to remove noise through motion-compensated frame
averaging. It appears that the different models perform
roughly equally.

Figure 5. Frame fusion using general optical
flow algorithm

Figure 6. Relationship of cylindrical and Can-
dide models used

4. Conclusions

Here we have shown that a 3-D model can be used to
add robustness to the optical flow calculations for a face in a
video sequence. Additionally, the resulting optical flow can
be used to fuse multiple frames to create a single frame re-
stored face. The tracking is based on facial features that are
easily identified and have significant edge information. The
3-D model enables us to convert the facial feature tracking
into realistic optical flow data for the entire face. Experi-
mental results have shown that in noisy video data, this ap-
proach is more accurate that using a less-constrained optical
flow algorithm
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Figure 7. Frame fusion using Candide 3D
model

Figure 8. Frame fusion using cylindrical 3D
model

Figure 9. Frame fusion using planar model
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