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1. Introduction

Our aim is to descibe proton emission from a deformed nucleus in a mi-
croscopic way. In our model, we assume that the shapes of the parent and
the daughter nuclei are the same, and that both nuclei perform collective
rotation. The parent state is constructed from collective states of a rotating
core and single-proton wave functions. It is assumed that the proton moves
in a quasi-bound state of an axially symmetric deformed potential. In the
asymptotic region, the behavior of the proton wave function is governed by
the Qp value of proton decay.

The proton resonance is described by a complex-energy Gamow state,
i.e., the pole of the S-matrix on the complex energy (or k) plane, En =
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ER� i
�
2 . The wave function of a Gamow state is regular at the origin and,

at large distances, is propotional to a purely outgoing Coulomb wave

ui(r; kn) � Ol(�n; knr); (1)

where kn = � � i
 (k2n = 2�
�h2
En) is the complex wave number and �n is

the Sommerfeld parameter. For a Gamow state, the decay width is simply
� = �2�Im(En); hence the half-life time of the single particle resonance is
�h ln 2=� = T s:p:

1=2 . For proton emitters from a spherically symmetric nucleus,

the single particle picture works very well if one takes into account the
many-body aspects by multiplying the single particle width by the spec-
troscopic factor S and comparing the measured �exp to S� [1].

2. Deformed Gamow states in an adiabatic approximation

Let us consider a single particle Hamiltonian h = t + v(rrr) with an axially
symmetric potential in the intrinsic frame of reference. In our calculations,
for the average potential we use a deformed optical Woods-Saxon potential
(with the spherical spin-orbit term) and the deformed Coulomb potential.
The bound and resonant eigenstates of this potential are labeled by the
parity quantum number � and the projection 
 of the single particle angu-
lar momentum on the symmetry axis. For convenience, deformed Nilsson
orbits are denoted by the asymptotic quantum numbers [Nnz�]. Energies
and wave functions of the bound (or quasibound) Nilsson orbits can be
accurately determined by diagonalizing the deformed Hamiltonian h in an
axially deformed harmonic oscillator basis by using the code WSBETA [2].
However the diagonalization results in a large number of spurious positive
energy states and does not give information on the widths of the resonances.
Therefore, to calculate the complex energy Gamow resonances of the de-
formed Hamiltonian, we expand the wave function into spherical partial
waves (fljg � i)

 
;�(rrr) =
lmaxX
l=lmin

jmaxX
j=


ul;j(r)

r
Yjl
(r̂): (2)

The radial wave functions ui(r) can be obtained from a system of coupled
di�erential equations:

u00i =
X
i0

�
li(li + 1)

r2
Æi;i0 + Vi;i0(r)� k2Æi;i0

�
ui0(r): (3)

The functions ui(r) are regular at the origin (ui(0) = 0), and they satisfy
the purely outgoing boundary condition of Eq. (1) at large distances, r >
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ras, where the coupling terms vanish. The values of kn and �n are the
same in each channel i = 1; :::; nc. The eigenvalues k

2 and the normalized
eigenfunctions are determined iteratively by integrating the coupled system
(3) numerically by using the powerful piecewise perturbation method [3].
Since the solution is diverging at large distances for real values of r, to
normalize the wave functions, one has to use the regularization procedure.
The code we developed for the calculation of the resonant Nilsson state is
called CCGAMOW. In its extended precision mode, CCGAMOW is able
to calculate the imaginary part of the En with an accuracy of 10�24 MeV.

The transformation to the laboratory system restores the rotational
invariance of the Hamiltonian. In the adiabatic approximation, one neglects
the rotational motion of the core and the resulting Coriolis coupling. In this
approximation, all the members of the ground state rotational band in the
daughter nucleus are degenerate (i.e., the moment of inertia I =1). This is
usually referred to as the strong coupling scheme, and the resulting resonant
state is called a resonant Nilsson orbit or a Nilsson-Gamow state. Since the
spectroscopic factor for a proton emission from a one-quasiparticle state can
be expressed as S = u2d with u

2
d being calculated in the BCS approximation,

the total width becomes � = u2d�sp.

3. Deformed Gamow states in a non-adiabatic approach

It is more appropriate to consider the process of proton emission in the
laboratory system of reference. This is a non-adiabatic (NA) approach or
a weak coupling approach in which the e�ect of the Coriolis coupling is
implicitely included [4]. Since the moment of inertia of the daughter nucleus
I is �nite, the degeneracy of the daughter states is removed: �I = �I(I+1)

(� = �h2

2I ). The Hamiltonian of the parent nucleus can be expressed as the
sum of that representing the rotating core, H0(�), and that of a single
proton:

H = H0(�) + t+
X
�

v�(r) fQ�(�) � Y�(r̂)g : (4)

The wave function of the decaying parent state is characterized by the total
angular momentum J and its projection M :

	JM (~r; �) =
1

r

X
Ijl

gJIjl(r)�
JM
Ijl (r̂; �); (5)

where
�JM
Ijl (r̂; �) =

X
m;�

hjmI�jJMiYjlm(r̂) I;�(�) (6)

is the channel function,  I;�(�) is the wave function of the core, and g�(r)
are the radial amplitudes. In the following, � = fI; j; lg denotes the chan-
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nel index. The radial amplitudes satisfy the system of coupled di�erential
equations

h
� �h2

2�

�
d2

dr2
� l(l+1)

r2

�
+ �I �E

i
gJ�(r)

+
P

��0 v�(r) V
J
�;�0(�) gJ�0(r) = 0

and are regular in the origin g�(0) = 0 and should satisfy the outgoing
boundary condition at r = ras:

gIjl(ras) � Ol(�I ; kIras); (7)

where

�I =
Ze2�

�h2kI
and k2I =

2�

�h2
(E � �I) =

2�

�h2
QI : (8)

This boundary condition di�ers from the one in the adiabatic case because
the correct energy of the daughter state QI is used. The coupled channel
non-adiabatic code NONADI is a modi�ed version of CCGAMOW.

In order to obtain widths that can be related to experimental data,
it is essential that the resonance should be placed at the proper energy
corresponding to the Qp value of the transition. Therefore, in the cor-
rected adiabatic approximation (ADC) [5, 6], one readjusts the depth of
the Woods-Saxon well V0 in order to reproduce the experimental value of
QI when calculating the partial width �I for the daughter state I . In the
non-adiabatic (NA) approach, one can adjust both V0 and I to reproduce
the mass of the ground state and the energy of the �rst excited 2+ state.
The partial widths for di�erent daughter states (I = 0; 2; :::) can be calcu-
lated using the current expression:

�J�(r) = i
�h2

2�

g0�� (r)g�(r)� g0�(r)g
�
�(r)Pn

�0 N�0(r)
; (9)

where the r-dependent partial norm is de�ned as N�(r) =
R r
0 jg�0(x)j2dx

and �JI (r) =
P

lj �
J
Ilj(r). The partial widths depend on r and saturate

only in the region of large r-values where the multipole couplings become
negligible. However, the total particle decay width is r-independent due
to the 
ux conservation: �J =

Pn
� �

J
�(r) =

P
I �

J
I (r). The saturated values

jc�j
2 = N�(ras) characterize the wave function of the non-adiabatic Gamow

resonance. From the partial widths, one can determine the branching ratios

B(I) =
�JI (r)

�J
for the decay to excited states in the daughter nucleus of the

daughter states (�ne structure in proton decay). These quantities can be
calculated not only for the ground state (or isomeric state) of the parent
nucleus but also for the members of the corresponding rotational bands.
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The energies and wave functions of these band members are a�ected by the
Coriolis coupling.

4. Results

The �rst nonadiabatic (NA) calculations for deformed proton emitters was
carried out by Kruppa et al. [7] in their analysis of the �ne structure in
131Eu, 141Ho, and 141mHo. A detailed comparison of the NA and the ADC
approaches for several deformed proton emitters can be found in Ref. [8].
A general comparison of NA and ADC results for the deformed proton
emitters 109I, 113Ce, 117La, 131Eu, 141Ho, and 141mHo is given in Table 4.
Though in some cases NA and ADC results are very close (e.g., for the

TABLE 1. Comparison of NA and ADC approaches for
half-lives and branching ratios B(2) for several deformed pro-
ton emitters

Parent Orbit TADC1

2

=TNA1

2

B(2)NA B(2)ADC

109I [420] 1
2

0:25 0% 0%
113Cs J = 3

2

+
0:20 0% 0%

117La [422] 3
2

0:88 3% 0:3%
131Eu [411] 3

2
1:43 39% 37%

141Ho [523] 7
2

0:35 6% 2:7%
141mHo [411] 1

2
1:04 1% 1%

141mHo [411]12 resonance), there are large di�erences for most of the nuclei

studied. In the case of the 113Cs J = 3
2
+
state, the Nilsson labeling loses

its validity due to the strong K-mixing.
The largest di�erence between NA and ADC is obtained in the case of

141Ho. The parent state, labeled as [523]72
�
, originates from the h 11

2

spher-

ical shell. The h 11

2

component is still the dominant one at the calculated

ground state deformation �2 = 0:29, �4 = �0:06. The 7=2� ! 0+ tran-
sition can only proceed via the f7=2 partial wave, which is very sensitive

to the small jc0;3; 7
2

j2 component of the wave function. The use of the NA

approach reduces this component to 0:011 from 0:027 in the AD case, which
results in the reduction of �0+ and an increase of B(2) to 6%.

The decay from the 141mHo isomeric state, which is identi�ed as a [411]12
Nilsson-Gamow state, is interesting since it is associated with the strong
Coriolis perturbation. Namely, in the NA approach, the J=1/2 and J=3/2
levels are almost degenerate, and the J=5/2 and J=7/2 levels also form a
doublet.
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In 131Eu, the highest branching ratio, B(2)=0.52, was calculated for

the yet-unobserved transition from the [532]52
�
resonant orbit. In the NA

approach, a nonzero value of jc2p3=2j
2=0.003 is due to the Coriolis coupling,

while it is obviously zero in the ADC approach when K = 
 = 5=2. For

the 5
2
�
! 2+ transition, the lowest partial wave in the NA case is p3=2, but

it is l � 3 in ADC. The lower the lmin value, the larger the penetrability,
and this magni�es the role of the p3=2 component (which is responsible for
15% of the total width �).

5. Conclusions

We demonstrated that it is possible to calculate the complex energy of the
deformed Gamow state with a precision that is high enough so that the half-
life calculated from the imaginary part of the energy is meaningful. We also
performed a comparison between non-adiabatic and adiabatic calculations.
It can be concluded that, in many cases, the corrected adiabatic treatment
cannot be used as a substitute for the full non-adiabatic calculations.
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