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Abstract. Properties of density-dependent contact pairing interactions in
nuclei are discussed. It is shown that the pairing interaction that is interme-
diate between surface and volume pairing forces gives the pairing gaps that
are compatible with the experimental odd-even mass staggering. Results of
the deformed Hartree-Fock-Bogoliubov calculations for this \mixed" pair-
ing interaction, and using the transformed harmonic oscillator basis, are
presented.

1. Introduction

Recent advances in radioactive ion beam technology have opened up the
possibility of exploring very weakly bound nuclei in the neighborhood of
the particle drip lines [1, 2, 3, 4]. A proper theoretical description of such
weakly bound systems requires taking into account the particle-particle
(p-p, pairing) correlations on the same footing as the particle-hole (p-h)
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correlations, which - on the mean-�eld level - is done in the framework of the
Hartree-Fock-Bogoliubov (HFB) [5, 6] or relativistic Hartree-Bogoliubov
(RHB) [7] theories. In these methods, it is essential to solve the equations for
the self-consistent densities and mean �elds in the coordinate representation
in order to allow the pairing correlations to build up with a full coupling to
particle continuum. This task can be easily accomplished when the spherical
symmetry is imposed; however, for deformed systems the problem becomes
very di�cult. The coordinate-space code working in the limit of the axial
symmetry became available only very recently [8], while the code which is
applicable also to triaxial deformations [9] is able to take into account only
a very limited part of the positive-energy phase space [10, 11].

As an alternative method, the partial di�erential HFB equations have
recently been solved for both spherical and axially deformed nuclei by ex-
panding the quasiparticle wave functions in a complete set of so-called
transformed harmonic oscillator (THO) single-particle wave functions [12,
13, 14]. They are derived from the standard harmonic oscillator basis by the
unitary local-scaling coordinate transformation [15, 16, 17] which preserves
many useful properties of the harmonic oscillator wave functions, and, in
addition , it gives us access to the precise form dictated by the desired
asymptotic behavior of the HFB densities. The resulting con�gurational
HFB+THO calculations present a promising alternative to algorithms that
are being developed for a coordinate-space solution to the HFB equations.

Apart from developing proper theoretical tools to solve the HFB or RHB
equations, one has to choose appropriate nuclear e�ective forces responsi-
ble for the description of the weakly bound systems. Concerning the p-h
channel, a variety of e�ective forces such as, e.g., the Skyrme and Gogny
interactions [18], or interactions based on relativistic Lagrangians [7], have
been extensively applied in the study of drip-line systems. In the p-p chan-
nel, the �nite-range Gogny interaction and the zero-range delta interactions
have been used. The pairing forces used in the p-p channel have been ad-
justed to properties of nuclei close to the stability line. Unfortunately, for
drip-line nuclei, in which the pairing e�ects are crucially important due
to the coupling to the continuum, the e�ective pairing interaction is not
known.

Since in �nite nuclei no derivation of the pairing force from �rst prin-
ciples is available yet, there are many variations in the choice of pairing
forces used in HFB and RHB calculations. When using the Gogny e�ective
interaction in the p-h channel, the most \natural" choice is to parameterize
the pairing force by the same �nite-range Gogny force [19, 20, 21, 22]. Ob-
viously, the same \natural" choice for the pairing force is a contact delta
interaction when used in combination with the e�ective Skyrme forces [5, 6].
(The \natural" choice does not have to be the right one. Microscopically,
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the e�ective p-p interaction does not have to be the same as the in-medium
p-h force [23].) In the case of relativistic approaches, both types of pairing
are used in combination with e�ective delta-like p-h interactions based on
relativistic Lagrangians [7, 24].

In the present paper we analyze the coordinate-space spherical HFB
results for semi-magic nuclei and discuss properties of the zero-range pairing
interaction. New \intermediate-type" pairing is suggested that takes an
intermediate position between volume and surface delta pairing usually
applied. With such a pairing force, we carry out the full HFB+THO mass-
table calculations for even-even axially deformed nuclei.

2. Hartree-Fock-Bogoliubov theory

Within the HFB theory [18] the wave function of the even-even system
is approximated by a generalized product state that represents the quasi-
particle vacuum. This wave function is de�ned in terms of the amplitudes
(U; V ) obtained by solving the HFB equations:

�
h� � �
��� �h� + �

��
Un

Vn

�
= En

�
Un

Vn

�
; (1)

where En are the quasiparticle energies, � is the chemical potential, and
the matrices h (= t + �) and � are de�ned by the matrix elements of the
two-body interaction:

���0 =
P
��0

�v���0�0��0� ;

���0 = 1
2

P
��0

�v��0��0���0:
(2)

The chemical potential � has to be determined (separately for neutrons and
for protons) by the subsidiary particle-number conditions.

3. Truncation of the �nite con�guration space

Expressions for the density matrix � and the pairing tensor � [18] in terms
of the HFB amplitudes U(En; r) and V (En; r),

�(r; r0) =
P

0�En�Emax

V �(En; r)V (En; r
0) ;

�(r; r0) =
P

0�En�Emax

V �(En; r)U(En; r
0) ;

(3)

invariably require a truncation of the quasiparticle eigenstates by de�ning
a cut-o� quasiparticle energy Emax, and then including all quasiparticle
states only up to this value. When the �nite-range Gogny force is used in
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the p-p channel, the cut-o� energy Emax has only numerical signi�cance. In
contrast, the HFB calculations that use the zero-range pairing force require
a �nite space of states; otherwise, they give divergent energies with increas-
ing Emax (see discussion in Ref. [6]). Recently, a regularization scheme has
been devised that allows putting the cut-o� prescription on �rm theoretical
ground [25, 26].

In practice, an e�cient cut-o� procedure can be devised [14] by using
the so-called equivalent HFB single-particle spectrum �en [5], de�ned by:

�en = (1� 2Nn)En; (4)

where Nn denotes the norm of the lower HFB wave function. This spectrum
is usually also used in the HFB calculations to readjust the values of the
neutron (proton) chemical potential to obtain the correct values of the
neutron (proton) particle number.

Due to a similarity between the equivalent energies �en and the single-
particle energies en, one may use the former ones to de�ne an appropriate
cut-o� procedure for the quasiparticle states. Note that each equivalent
energy characterizes a single given quasiparticle state, while the single-
particle energies do not obey such a direct relationship. Therefore, the
cut-o� is realized by taking into account only those quasiparticle states
for which �en � �emax, where �emax>0 is a parameter de�ning the amount
of the positive-energy phase space taken into account. All the hole-like
quasiparticle states correspond to Nn<1/2, and hence they have negative
values of �en. Therefore, the condition �en � �emax guarantees that they are all
taken into account, even if they correspond to high (positive) quasiparticle
energies. In this way, a global cut-o� prescription is de�ned which ful�lls the
requirement of taking into account the positive-energy phase space as well
as all quasiparticle states up to the highest hole-like quasiparticle energy.

4. Density-dependent contact pairing forces

In the actual HFB calculations based on the Skyrme forces in the p-h
channel (as, e.g., the SLY4 parametrization [27] used in the present work),
contact pairing interaction is usually used in the p-p channel. Two di�erent
forms have been used up to now { the volume type,

V �
vol(r; r

0) = V0 �(r� r0) (5)

or the surface type,

V �
surf(r; r

0) = V0

�
1�

�(r)

�0

�
�(r� r0); (6)
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Figure 1. Comparison between the experimental staggering parameters (upper left
panel) and the average neutron pairing gaps calculated within the spherical HFB method
for the Skyrme SLy4 force and three di�erent versions of the zero-range pairing interac-
tion.

where �0=0.16 fm
�3 is the saturation density, and V0 de�nes the strength

of the interaction. (The origin of the terms \volume" and \surface" has
been discussed in Refs. [6, 28]. See Ref. [29] for more discussion on density
dependence.) In our calculations, for every form of the pairing force, the
value of V0 is �xed by requiring that the experimental value of the neutron
pairing gap in 120Sn (1.245MeV) is reproduced within a given energy cut-o�
parameter �emax, cf. Ref. [30]. In fact, when using contact pairing forces, one
should view the cut-o� parameter to be an additional parameter de�ning
the force. In the present study the value of �emax=60MeV is used.

Under the conditions speci�ed above, we have performed the spherical
coordinate-space HFB calculations in semi-magic even-even nuclei. Results
obtained for the average pairing gaps are shown in Figs. 1 and 2 for neutrons
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Figure 2. Same as in Fig. 1 except for the average proton pairing gaps.

and protons, respectively. In the upper left panels we show the values of
experimental three-point staggering parameters �(3) centered at odd par-
ticle numbers [31, 32] and averaged over the two particle numbers adjacent
to the even value.

The lower left and right panels in Figs. 1{2 show the results obtained for
the surface and volume pairing interactions, respectively. When compared
with the experimental numbers, one sees that both types of pairing inter-
action are in clear disagreement with experiment. The surface interaction
gives the pairing gaps that increase very rapidly in light nuclei, while the
volume force gives the values that are almost independent of A. The surface
pairing in light nuclei is so strong that pairing correlations do not vanish in
doubly magic nuclei such as 16O or 40Ca. The experimental data show the
trend that is intermediate between surface and volume; hence, below we
study the intermediate-character pairing force that is half way in between,
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Figure 3. Average neutron pairing gap in even-even nuclei calculated within the de-
formed HFB+THO method for the Skyrme SLy4 force and contact mixed pairing inter-
action.

i.e., it is de�ned as:

V �
mix(r; r

0) =
1

2

�
V �
vol + V �

surf

�
= V0

�
1�

�(r)

2�0

�
�(r� r0): (7)

The upper right panels in Figs. 1 and 2 show the results obtained with
the mixed pairing force. It can be seen that one obtains signi�cantly im-
proved agreement with the data, although a more precise determination of
the balance between the surface and volume contributions still seems to be
possible. One should note that similar itermediate-character pairing forces
have recently been studied in Ref. [33] where it was concluded that pairing
in heavy nuclei is of a mixed nature.

In Fig. 3 we present preliminary results for the average neutron pairing
gaps calculated with the intermediate-character pairing force within the
deformed HFB+THO method. Detailed analysis and discussion of these
calculations will be presented in a forthcoming publication.
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