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1. Introduction

In this Proceedings, I will describe the behavior of two different quantum-
mechanical systems as a function of increasing temperature. While these
systems are somewhat different, the questions addressed are very similar,
namely, how does one describe transitions in phase of a finite many-body
system; how does one recognize these transitions in practical calculations;
and how may one obtain the order of the transition.

Thermal transitions that may develop in finite systems are somewhat
difficult to recognize in practice. Recently Borrmann [1, 2] suggested a
method to study these transitions. The method is based on an analysis
that Grossmann and Rosenhauer made for macroscopic systems about three
decades ago [3]. One evaluates the canonical partition function Z(B) at
complex arguments B = B+i7. Since Z (/) is real, it suffices to consider the
partition function Z(B) for arguments in the upper complex plane. A line
of zeros that intersects the real axis at the critical temperature separates
two different phases of the macroscopic system. Further information about
the order of the phase transition is encoded in the slope of the line at the
intersection point and the density of zeros close to the intersection point.
This is physically plausible. We recall that thermodynamic quantities are
given by logarithmic derivatives of the partition function and thus diverge
at its zeros.

In finite systems, the line of zeros reduces to more or less closely spaced
zeros that line up on a curve. Following Ref. [1], one then studies the be-
havior of the zeros with the smallest imaginary part and of the underlying
curve while increasing the number of particles. This allows one to predict
the critical temperature and order of the phase transition in the infinite
system. Furthermore, the shape of the curve or the presence of several such
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curves allows one to identify different “phases” already in finite systems.
These techniques have been used to study precursors of phase transitions in
Bose-Einstein condensates of ideal gases and non-interacting atomic clus-
ters [1, 2]. The order of the phase transition is determined as follows [1].
The distribution of zeros close to the real axis is approximately described
by three parameters. Two of these parameters reflect the order of the phase
transition, while the third indicates the size of the system. Let us assume
that the zeros lie on a line. We label the zeros according to their closeness
to the real axis. Thus 7 reflects the discreteness of the system. The density
of zeros (DOZ) for a given 7y is given by
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with k£ = 2,3,4,--- A simple power law describes the density of zeros for
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The final parameter that describes the distribution of zeros is given by
v=tanv ~ (B2 — B1)/(r2 — 11).

In the remainder of this Proceedings, I will discuss two systems to which
we have applied the DOZ of the partition function. In both systems a
two-body interaction is present in contrast to Borrmann’s work. I discuss
the melting of the one-vortex state in a Bose-Einstein condensate [4], and
phases of a nuclear pairing problem [5] with non-degenerate single-particle
spacing.

2. Melting of the one-vortex state in a Bose-Einstein condensate

Studies of vortices in dilute atomic Bose-Einstein condensates have received
much attention in recent years. The condensate wave function of a vortex
state exhibits a quantized circulation of its velocity field. This state may
experimentally be formed, e.g., by “phase imprinting” techniques [6] or by
directly transferring angular momentum to the condensating system [7].
We address here the regime of long coherence length. Indeed, harmonically
trapped Bose systems with perturbatively weak repulsive interactions dis-
play a rich structure [8]. At low ratios of angular momentum L to particle
number N, i.e. L/N < 1, the ground states are dominated by quadrupole
and octupole excitations [9, 10] and changes smoothly until the one-vortex
state L/N = 1 is approached. The one-vortex state is a Bose-Einstein con-
densed state where a macroscopic number of particles carries one quantum
of angular momentum each [11]. Naturally, the question arises whether the
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observed changes in the condensate wave function structure and the forma-
tion of quantized vortices are associated with thermal phase transitions.

For the transition to the one-vortex state, the answer is affirmative.
Wilkin et al. [11] showed that the one-particle reduced density matrix of the
one-vortex state has one eigenvalue of order N and thus meets a criterion
for Bose-Einstein condensation in finite systems; see e.g. [12]. The order of
this phase transition, however, was not known until now. In this section, I
will use the complex zeros of the partition function to classify this phase
transition from its precursors in finite systems.

We consider a system of N bosons confined in a three-dimensional har-
monic trap at total angular momentum L and restrict ourselves to the
sector of maximal magnetic quantum number; i.e. the particles are in the
ground state with respect to excitations along the axis of rotation. The non-
interacting system is highly degenerate. In what follows, we assume that the
repulsive interaction between the bosons is perturbatively weak and simply
lifts this degeneracy. This yields sets of now quasi-degenerate states that
are separated by multiples of the oscillator spacing hw. Under these con-
ditions, the level spacing between quasi-degenerate states is much smaller
than the oscillator spacing. We are interested in the thermal properties of
the system while keeping the angular momentum L fixed. For temperatures
that are smaller than the oscillator spacing, we may restrict ourselves to
the lowest-lying set of quasi-degenerate states with approximate energies
E =~ Lhw. (We set the ground state energy of the non-rotating system
to zero.) Current experiments do not work within this low-temperature
regime. We recall that the onset of Bose—Einstein condensation is already
observed for temperatures kT ~ N/3hw [13]. Below we find that quanti-
tative results concerning thermal phase transitions are already determined
by a few hundred low-lying levels.

It thus seems that one can lift the requirement of perturbatively small
temperatures without facing the inclusion of highly excited states for the
problem under consideration. In the low-temperature regime, the Hamilto-
nian of the N-boson system with contact interaction reads [14]
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Here, vy denotes the strength of the contact interaction. The operators &;

and a; create and annihilate one boson in the single-particle state with
angular momentum j with 5 = 0,1,2..., respectively. The operators N =
>_;fj and L = >_j jfrj count the number of particles and the quanta of
angular momentum and have quantum numbers N and L, respectively.

We have used the number operators n; = &;r_&j_ Basis states are denoted
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as |ng,n1,n,...), where n; denotes the number of particles with angular
momentum j.

We investigated the transition to the one-vortex state first. For this
purpose, we fix the number of particles to N = 30 and fully diagonal-
ize the Hamiltonian for several values of angular momentum in the range
0.8 < L/N < 1.07 around the one-vortex state L/N = 1. The partition
function is computed from the obtained energy levels. We found that the
zeros approach the real axis with increasing L. The closest encounter is
found for the one-vortex state L = N = 30. This is a precursor of the
condensation into the one-vortex state in the infinite system and supports
earlier results [11, 14, 10]. We are particularly interested in the order of this
phase transition. To this purpose, we consider the one-vortex state L = N
and compute eigenvalues of the Hamiltonian (3) for increasing values of
particle number N. A complete diagonalization is prohibitively expensive
for N exceeding values of about 35. Instead, we restrict ourselves to the
computation of the lowest-lying eigenvalues. These are used for an approx-
imate construction of the partition function. We found numerically that its
zeros with smallest positive imaginary parts are already sufficiently well
converged when only a few hundred eigenvalues are included in the com-
putation. We considered systems up to L = N = 55, corresponding to a
dimension of Hilbert space of the order 4.5 x 10°. The relevant eigenval-
ues are computed numerically using the ARPACK and PARPACK routines
[15].

Figure 1 shows the distribution of poles in the complex plane of the
specific heat at the one-vortex state for different system sizes. These plots
are generated from the lowest-lying 300 eigenvalues. (Increasing the number
of eigenvalues from 300 to 380 yields less than 1% change in the numerical
results. Thus, the data are sufficiently well converged for our purposes.)
It is clearly seen that the zeros line up and approach the real axis with
increasing system size.

We are now able to classify the transition using the parameters «, v, and
71, as described in the Introduction. In the thermodynamic limit, 71 — 0, in
which case the parameters « and -y coincide with the infinite system limits
discussed by Grossmann and Rosenhauer [3]. For infinite systems, « = 0
and v = 0 indicates a first-order phase transition, while 0 < a < 1 and
v = 0 or v # 0 indicates a second-order transition. For systems approaching
infinite particle number, o cannot be smaller than zero since this causes a
divergence of the internal energy. In small systems, with finite 7, @ < 0 is
possible and is also indicative of a first-order transition. We show our results
for a,7, 7 in Table 1 for the N = 40, 50, 52, 55 systems. 71 decreases with
increasing system size as a power law. The fit is given by 71 = 1.15N 153,
From the table, we note that ~ is nearly zero, and « is a small negative
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Figure 1. Contour plots of the specific heat in the complex temperature plane for the
L/N = 1 systems with increasing numbers of particles: a) N = 40, b) N = 50, and c)
N = 55. The spots indicate the locations of the zeros of the canonical partition function.

N T ¥ @

40 0.0715 -0.03 -0.1109
50  0.055 0.0 -0.145
52 0.0563 0.003 -0.147
55 0.050 0.003 -0.148

TABLE 1. Calculated parame-
ters 71, 7, and « for the various
boson systems at L/N = 1.

number for each system we studied here. The critical temperature kT, is
approximately given by 1/8;. Our data suggest that kT, ~ vgN'-1-14. The
N-dependence differs considerably from what is found for the ideal Bose
gas in three-dimensional traps [13].

We thus find that the phase transition to the one-vortex state is first
order. This result combines well with previous results found for the energy
and wave function structure. We recall that the ground state energy of the
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N-boson system exhibits a kink at L = N, and that the wave function
structure changes strongly when increasing L beyond N [14, 10].

3. Nuclear pairing transitions

We turn now to a fermion problem familiar from nuclear physics. When a
system of correlated fermions such as electrons or nucleons is sufficiently
small, the fermionic spectrum becomes discrete. If the spacing approaches
the size of the pairing gap, superconductivity is expected to break down
[16]; however, recent experiments on superconducting ultrasmall aluminum
grains by Tinkham et al. [17] revealed the existence of a spectroscopic gap
larger than the average electronic level density. This feature was interpreted
as a reminiscence of superconductivity and renewed the interest [18, 19, 20,
21] in studies of what is the lower size limit for superconductivity.

Other finite fermionic systems such as nuclei are expected to exhibit a
variety of interesting phase-transition-like phenomena, like the disappear-
ance of pairing at a critical temperature 7, = 0.5 — 1 MeV or the nuclear
shape transitions of deformed nuclei associated with the melting of shell
effects at T, =~ 1 — 12 MeV. In recent theoretical and experimental studies
[22, 23] of thermodynamical properties of finite nuclei, the heat capacity
has been found to exhibit a non-vanishing bump at temperatures propor-
tional to half the pairing gap. These bumps were interpreted as signs of the
quenching of pair correlations, representing, in turn, features of the pairing
transition for an infinitely large system. Here we will demonstrate the dif-
ferences among even and odd systems, and strongly paired systems using
the DOZ techniques.

Since we are dealing with pairing correlations, we choose our Hamilto-

nian as

H= Z E,'a;rai - GZ aga;raj—aj, (4)

% i

where a! and a are fermion creation and annihilation operators, respec-
tively. The indices ¢ and j run over the number of levels L, and the label
7 stands for a time-reversed state. The parameter G is the strength of the
pairing force, while ¢; is the single-particle energy of level 1. We assume that
the single-particle levels are equidistant with a fixed spacing d. Moreover,
in our simple model, the degeneracy of the single-particle levels is set to
2J +1 =2, with J = 1/2 being the spin of the particle.

For systems with less than ~ 16 — 18 particles, this model can be diago-
nalized exactly, and we can obtain all eigenstates. In our studies below, we
will always consider the case of half-filling, i.e., equal number of particles
and single-particle levels. This case has the largest dimensionality: for 16
particles in 16 doubly degenerate single-particle shells, we have a total of
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Figure 2. Contour plots of the specific heat in the complex temperature plane for a)
N =11, b) N = 14, and c¢) N = 16 particles. Panel d) shows the N = 14 case with weak
pairing. The spots indicate the locations of the zeros of the canonical partition function.

4 x 10® states. We choose units MeV for the energy and set G = 0.2 MeV
in all calculations while we let d vary.

In Fig. 2 we show contour plots of the specific heat | C,(B) | in the
complex temperature plane for N = 11 (a), 14 (b), and 16 (c) particles
at normal pairing d/G = 0.5 and the N = 14 (d) in the weak pairing
limit, d/G = 2. The poles are at the center of the dark contour regions. We
see evidence of two phases in these systems. The first phase, labeled I in
Fig. 2, is a mixed seniority phase, while the second phase, I, is a paired
phase with zero seniority and exists only in even-N systems. No paired
phase exists in the NV = 11 system and no clear boundaries are evident in
the weak pairing case. The latter also lends support to our microcanonical
analysis. For d/G > 1.5, the free energy develops only one minimum. We
find that for (b) and (c) the zeros are apparently distributed along two
lines where the intersection occurs at 7y, which is the pole closest to the
real axis. As the pairing branch (for § > (31) only encompasses two points,
we are unable to precisely determine a along this branch while v > 0. It is
therefore not fully clear whether o along this branch will be positive and
thereby allow us to classify the transition as second order. However, the
method of Borrmann et al. reveals the development of distinct phases.

4. Conclusions

Finite quantum-mechanical systems do not undergo phase transitions; how-
ever, one may study the residual effects of phase transitions by analytically
continuing the partition function of a given system into the complex plane.
We applied this method to a boson system for which we found indica-
tions of a first-order transition. In the case of nuclear pairing, we find a
phase difference between even and odd systems, although we were not able
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to exactly classify it with the DOZ technique. It can be classified using
microcanonical-ensemble techniques from which we find that the transition
is second order [5]. We will in the future extend these techniques to in-
corporate more complicated nuclear interactions (such as deformation) to
understand their influence on phase transitions.

Acknowledgements

Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the
US Department of Energy under Contract No. DE-AC05-000R22725. This
work is the result of collaborations with A. Beli¢, M. Hjorth-Jensen, and
T. Papenbrock.

References

1. P. Borrmann, O. Miilken, and J. Harting, Phys. Rev. Lett. 84, 3511 (2000).

2. O. Miilken, P. Borrmann, J. Harting, and H. Stamerjohanns, Phys. Rev. A 64,
013611 (2001).

3. S. Grossmann and W. Rosenhauer, Z. Phys. 207, 138 (1967); 218, 437 (1969); 218,
449 (1969).

4. D.J. Dean and T. Papenbrock, submitted to Phys. Rev. A (2001), and arXiv:cond-
mat/0107613.

5. A. Beli¢, D.J. Dean, and M. Hjorth-Jensen, submitted to Phys. Rev. Lett. (2001),
and arXiv:cond-mat/0104138.

6. M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E.
A. Cornell, Phys. Rev. Lett. 83, 2498 (1999).

7. K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84,
806 (2000).

8. D. A. Butts and D. S. Rokhsar, Nature 397, 327 (1999).

9. B. Mottelson, Phys. Rev. Lett. 83, 2695 (1999).

10. G. M. Kavoulakis, B. Mottelson, and C. J. Pethick, Phys. Rev. A 62, 063605 (2000).

11. N. K. Wilkin, J. M. F. Gunn, and R. A. Smith, Phys. Rev. Lett. 80, 2265 (1998).

12. A. J. Leggett, Rev. Mod. Phys. 73, 307 (2001).

13. For a review see, e.g., F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari,
Rev. Mod. Phys. 71, 463 (1999).

14. G.F. Bertsch and T. Papenbrock, Phys. Rev. Lett. 83, 5412 (1999).

15. R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of
Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, STAM
(1998), code available at http://www.caam.rice.edu/ software/ARPACK/.

16. P. W. Anderson, J. Phys. Chem. Solids 11, 28 (1959).

17. D. C. Ralph, C. T. Black, and M. Tinkham, Phys. Rev. Lett. 74, 3241 (1995);
C. T. Black, D. C. Ralph, and M. Tinkham, ibid. 76, 688 (1996); ibid. 78, 4087
(1997)

18. F. Braun and J. von Delft, Phys. Rev. Lett. 81, 4712 (1998).

19. A. Mastellone, G. Falci, and R. Fazio, Phys. Rev. Lett. 80, 4542 (1998).

20. J. Dukelsky and G. Sierra, Phys. Rev. Lett. 83, 172 (1999).

21. J. von Delft and D. C. Ralph, Phys. Rep. 345, 61 (2001).

22. S. Liu and Y. Alhassid, preprint nucl-th/0009006 and Phys. Rev. Lett., in press.

23. E. Melby et al., Phys. Rev. Lett. 83, 3150 (1999); A. Schiller et al., Phys. Rev. C
63, 021306 (2001); E. Melby et al., ibid. 63, 044309 (2001).



