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Abstract

A novel, template-based method for face recognition is
presented. The goals of the proposed method are to inte-
grate multiple observations for improved robustness and to
provide auxiliary confidence data for subsequent use in an
automated video surveillance system. The proposed frame-
work consists of a parallel system of classifiers, referred to
as observers, where each observer is trained on one face
region. The observer outputs are combined to yield the final
recognition result. Three of the four confounding factors –
expression, illumination, and decoration – are specifically
addressed in this paper. The extension of the proposed ap-
proach to address the fourth confounding factor – pose –
is straightforward and well supported in previous work. A
further contribution of the proposed approach is the com-
putation of a revealing confidence measure. This confidence
measure will aid the subsequent application of the proposed
method to video surveillance scenarios. Results are re-
ported for a database comprising 676 images of 160 sub-
jects under a variety of challenging circumstances. These
results indicate significant performance improvements over
previous methods and demonstrate the usefulness of the
confidence data.

1. Introduction

Despite the availability of commercial systems, face
recognition continues to be an active topic in ongoing com-
puter vision research, indicating that there exists significant
room for improvement. Current face recognition systems
perform quite well under good circumstances, but tend to
suffer when variations in expression, illumination, decora-
tion (i.e., glasses, facial hair), or pose are present. Most
current face recognition research – including the work pre-
sented here – aims to improve recognition performance in
the presence of such confounding factors. An additional
goal of the work presented herein is to develop a recogni-

tion engine to serve as the foundation for a broader video
surveillance system, primarily targeted at the secure facility
monitoring scenario for personnel tracking and monitoring.
Used in the facility monitoring scenario, however, such a
system could also easily provide further capabilities such
as an additional safeguard for access control and/or threat
detection. We note that this paper does not address face de-
tection [17], face landmark (eyes, nose, etc.) location, or
face tracking [5, 13].

Although much of the current research is focused upon
improving performance in the presence of confounding fac-
tors, current algorithms address no more than two of the
four of the confounding factors – illumination, expression,
decoration, and pose – simultaneously. Below we briefly
survey some recent work aimed at addressing one or more
of these four factors.

Illumination. Approaches for dealing with varying illu-
mination are primarily based upon linear discriminant anal-
ysis (LDA), sometimes referred to as “Fisherfaces” [3, 29,
30]. A motivating principle behind these techniques is the
approximation of a face as a Lambertian surface. As noted
in [3], the images of a Lambertian surface under varying il-
lumination lie in a three-dimensional (3D), linear subspace
of the entire image space. Hence, the different face surfaces
should be linearly separable using LDA.

Expression.Varying facial expression can be modeled
to some degree by the active appearance models (AAMs)
presented in [9]. AAMs characterize shape and texture in-
formation using a statistical point distribution approach.

Illumination and expression. Bayesian face recogni-
tion [21, 22, 23] has been proposed to improve robust-
ness in the presence of varying illumination and expression.
These approaches employ probabilistic models to character-
ize intrapersonalandinterpersonaldifferences with a prin-
cipal component analysis (PCA) or “eigenface” representa-
tion. In [21], it is noted that the Bayesian approach can be
thought of as a general, nonlinear extension of LDA. With
this in mind, it seems that LDA should also handle both il-
lumination and expression to some degree.



Facial decoration. There has been very little work
towards explicitly handling facial decoration. In [23]
and [24], it was shown that two “eigenfeature” images –
the eyes and the nose – could be used for accurate recogni-
tion after a change in facial hair. However, no method for
selecting the appropriate eigenfeatures was suggested. In
the LDA approach described in [29], some promising re-
sults were obtained after artificially degrading face images,
indicating that LDA might also provide a reasonable solu-
tion to handling some degree of decoration, assuming the
registration landmarks can still be located.

Pose. One method to handle varying pose is the view-
based eigenspace approach [24], which was recently shown
to perform quite well [16]. Each pose is represented by its
own subspace and the multiple subspaces act as indepen-
dently trained “experts” or observers trying to explain the
data. Similarly motivated techniques include characteristic
eigenspace curves [15] and view-based active appearance
models [6].

Pose and expression.Recently, new AAM methods [6, 7]
have been proposed to handle both varying pose and ex-
pression. No recognition results, however, are presented to
demonstrate performance.

Pose and illumination.Methods were presented in [14]
and [31] to deal with varying pose and illumination. These
methods rely upon generative models that can synthesize a
given face under varying illumination from different view-
points. Although the performance in [14] is quite remark-
able, the proposed method employs seven training images
for each subject under strictly controlled lighting and does
not address expression or decoration.

Video. Although there has been some previous work in
video-based face recognition [10, 11, 16, 20], we are un-
aware of any proposed methods that address all four of the
confounding factors. In fact, [20] addresses none, [16] tack-
les only pose, and [10] and [11] address only pose and ex-
pression.

When we intuitively consider how humans recognize
faces visually, we note that humans integrate information,
often obtained at different times, by analyzing multiple ob-
servations of different face regions and discounting con-
founding factors when present. For example, a new beard
might be confusing, but identity can still be revealed by the
eyes and nose region. Or perhaps strange lighting can ini-
tially cause confusion, but accurate recognition is achieved
as the subject moves through different lighting conditions.
This naturally leads us to consider using multiple observa-
tions, such as those available from video sequences and/or
multiple cameras, and integrating the results. It is also evi-
dent that no single algorithm in the above survey addresses
more than two confounding factors at once. With these
thoughts in mind, we now note the specific contributions
of this paper. A face recognition algorithm is proposed that

specifically addresses three of the four confounding factors
– illumination, expression, and decoration; extending the
approach to address pose is discussed in Section 3. Fur-
thermore, the proposed approach provides a revealing con-
fidence measure that will aid in the application of the algo-
rithm to video surveillance scenarios.

The remainder of this paper is organized as follows. In
Section 2, we review PCA and LDA methods for dimen-
sionality reduction. Both PCA and LDA are used in our ap-
proach and are quite common in template-based face recog-
nition in general. In Section 3, we describe our recognition
framework. We discuss the results of some experiments in
Section 4 and make some concluding remarks in Section 5.

2. Dimensionality Reduction

Template-based face recognition algorithms essentially
use the actual image pixels (after geometry and grayscale
normalization) as features. Without dimensionality reduc-
tion, however, the size of such a feature vector would be
quite impractical. For example, the full frontal face im-
ages we employ are92 × 115 pixels, which would imply
a feature vector of dimension 10,580. Dimensionality re-
duction is employed to reduce such feature vectors to a
more tractable size. There are two types of optimal dimen-
sionality reduction that are widely used in face recognition:
PCA [21, 26, 28] and LDA [3, 27, 29]. The methods that use
LDA – including ours – generally employ PCA as an initial
step. In this section, we briefly review the fundamentals of
PCA and LDA. We begin with a set ofN images, repre-
sented as vectors{x1, x2, . . . , xN} with n pixels each, i.e.,
xk ∈ Rn. Each image belongs to one ofC classes denoted
by {ω1, ω2, . . . , ωC}.

2.1. Principal Component Analysis (PCA)

PCA, which is the basis of the well known eigenface
techniques, seeks a linear projection to maximize the scat-
ter of all the sample vectors in the reduced dimensionality
space. Each of the sample vectors is to be projected onto a
p-dimensional subspace, wherep < n, by

yk = PT xk, (1)

whereP ∈ Rn×p. The total scatter (i.e., covariance) matrix
in the original space is given by

St =
N∑

k=1

(
xk − µ

)(
xk − µ

)T
. (2)

In the reduced spaceRp, the total scatter matrix is simply
PT StP. PCA seeks the linear transformationPo to max-



imize the determinant of the total scatter matrix in the re-
duced space:

Po = arg max
P

|PT StP|. (3)

The well known solution to this problem is the matrix
Po ∈ Rn×p whose columns are thep eigenvectors ofSt

with the p largest eigenvalues. Note thatSt is an n × n
matrix, wheren is the number of image pixels which can
be quite large (10,580 for our full frontal face images, for
example). The direct computation of the eigenvectors and
eigenvalues for such a largeSt is nontrivial. In the face
recognition problem, however, the number of imagesN
is generally much less than the dimensionality of original
spacen. In this small sample size scenario,St is not full
rank and its eigenvectors and eigenvalues can actually be
found from a much more tractableN ×N matrix [12].

The drawback to using PCA for dimensionality reduc-
tion is that class membership is not considered. The projec-
tion is chosen to capture the most variation in the samples,
even if that variation does not discriminate between differ-
ent classes. This is illustrated for a two-dimensional, two
class problem in Fig. 1. PCA selects the line along which
the scatter of all the projected samples is maximum, even
though the two classes will overlap along that line. As de-
scribed in [27], PCA captures themost expressive features.
LDA, on the other hand, retains themost discriminative fea-
tures.

1ω

2ω

PCA

LDA

Figure 1. Reduction to one dimension for a
two-dimensional, two class problem. Projec-
tion onto the line selected by PCA results in
completely overlapping classes, even though
most of the overall sample variation is re-
tained. Projection onto the line found by LDA,
however, preserves the class separation.

2.2. Linear Discriminant Analysis (LDA)

Assume that each sampleyk is now ap-vector and to be
projected onto ad-dimensional subspace, whered < p by

zk = DT yk, (4)

whereD ∈ Rp×d is the projection matrix being sought. In
LDA, an effort is made to retain thediscriminativefeatures,
rather than theexpressivefeatures, by defining within-class
and between-class scatter matrices. The within-class scatter
matrix,Sw, is given by

Sw =
C∑

i=1

∑
xk∈ωi

(
xk − µi

)(
xk − µi

)T
, (5)

whereµi is the sample mean for classωi. The between-
class scatter matrix,Sb, is defined by

Sb =
C∑

i=1

(
µi − µ

)(
µi − µ

)T
, (6)

whereµ represents overall sample mean. The within-class
scatter matrix in the reduced space is given byDT SwD
while the between-class scatter matrix in the reduced space
is DT SbD. LDA seeks the projection matrixDo to maxi-
mize the ratio of between-class scatter to within-class scat-
ter in the reduced space:

Do = arg max
D

|DT SbD|
|DT SwD|

. (7)

The solution to this problem [8, 12] is the matrixDo ∈
Rp×d whose columns are thed eigenvectors ofS−1

w Sb with
the d largest eigenvalues. Note that the matrixSb defined
in (6) is of rankC − 1 or less. This is evident by noting that
Sb is the sum ofC rank one vector outer products. Only
C − 1 of these vectors are linearly independent, however,
sinceµ is a linear combination of theµi’s.

Methods that employ LDA generally employ PCA as an
initial step to reduce the dimensionality of the LDA prob-
lem to a more tractable size. First, the optimal PCA ma-
trix Po ∈ Rn×p is computed from the original sample vec-
tors{x1, x2, . . . , xN}. These sample vectors are then pro-
jected ontoRp, as in (1), usingPo. LDA is then used
to find Do ∈ Rp×d from the reduced dimension vectors
{y1, y2, . . . , yN}. The PCA reducedp-vectors are then pro-
jected ontoRd, as in (4), usingDo. Recognition is per-
formed inRd. When a new image is to be classified, it can,
of course, be projected ontoRd directly using the single
n× d projection matrixW defined by

W = PoDo. (8)



Preprocessing

Observer 1

Observer 2

Observer 3

Combiner
Input Image

Sub-images Subject Score Data

Subject

Confidence

Grayscale Normalization
Geometry Normalization

LDA Nearest Neighbor
Classifiers

Sum Rule

Figure 2. Example of the proposed framework
with three observers.

3. Multiple Observers

Perhaps the earliest suggestions for the use of multiple
observers can be found in [4] and also in the view-based and
modular eigenspaces of [24]. It is noted in [24] that recogni-
tion from a full frontal face image is sensitive to changes in
expression and decoration. By breaking the full face image
into modular subregions, it is shown that improved accuracy
can be obtained in the presence of expression and decora-
tion variation. For example, a change in facial hair does
not degrade the performance of the eye region classifier or
perhaps the mouth region can be discarded in the presence
of confounding facial expression. No method is provided,
however, for fusing the information from the different ex-
perts nor is illumination addressed. An extension to the
view-based eigenspaces of [24], along with more compre-
hensive experimental data showing much promise, is found
in [16]. We note that the modular eigenspaces suggested
in [24] are the primary motivation for our different LDA
observers. Furthermore, we note that the view-based clas-
sifiers of [16] are combined – using a neural network – in a
manner similar to how our LDA observers are combined.

Through the survey of previous work in Section 1 and
the previous multiple observer efforts discussed above, we
propose a face recognition framework to provide improved
robustness to three of the four confounding factors – il-
lumination, expression, and decoration – simultaneously.
This framework will employ a parallel system of observers,
each of which is trained on a specific region of the face
from a specific viewpoint. Each such observer will be an
LDA-based classifier and the outputs of all the observers
will be combined using a simple classifier combination
method [18]. An example of such a system with three ob-
servers is shown in Fig. 2. The multiple observers will pro-
vide some robustness to decoration, as will the use of LDA.
Illumination will be handled by LDA. Expression will be
addressed through the combination of multiple observers
and LDA – some observers will be approximately invari-
ant to expression, while LDA will discount expression vari-
ability, as it is not discriminatory, when constructing the

projection matrices. Finally, additional robustness will be
provided by integrating the responses of the observers to
obtain a final classification. Based upon the success of pre-
vious work in [24] and particularly [16], we hypothesize
that the extension of our approach to handle varying pose
is quite straightforward, requiring only additional observers
for additional viewpoints. In the following subsections, we
describe the components of our current system in more de-
tail.

3.1. Preprocessing

The preprocessing stage indicated in Fig. 2 assumes a
frontal face image as input with previously labeled land-
marks. In our implementation, the centers of the eyes, the
tip of the nose, and the center of the mouth are used. Land-
marks can be located automatically by various methods, but
have been found manually for our experiments. In the pre-
processing stage, the full frontal image is warped to align
landmarks according to each observer. Observer 1 employs
the full frontal image and affine warping is used to align
the center of each eye and the center of the mouth to pre-
defined model. Observer 2 uses the eyes and nose region
of the face; affine warping is applied to align the center of
each eye and the tip of the nose to a fixed model. Observer
3 uses only the eyes region and linear conformal warping
is used to align the center of each eye to a model. After
this geometry normalization, a mask is applied to remove
background information and then each image is normalized
to have zero-mean and unit-variance to account for gross
grayscale variation. The resulting images are raster scanned
to create the feature vectors for input into the observers.

3.2. Observers

Observer 1 works with92 × 115 pixel full frontal face
images implying an original feature vector length ofn1 =
10, 580. Observer 2 uses92 × 56 pixel images of the eyes
and nose face region, implying an original feature vector
length ofn2 = 5, 152. Observer 3 works with92×40 pixel
images of the eyes region, implying an original feature vec-
tor length ofn3 = 3, 680. Examples of images correspond-
ing to each observer are shown in Fig. 3. Each observer
uses PCA to reduce the original dimensionality ofno for
o = {1, 2, 3} to p = 120. LDA is subsequently applied
to reduce dimensionality fromp = 120 to d = 50. Note
that during recognition, the reduction to dimensiond = 50
is carried out in a single step by the projection matrixW
given by (8).

For classification purposes, each observer compares each
query image to every subject in its own database. For query
imageq and each observero, a scoreαo

qs is computed for
each subjects and passed on to the combiner. The score for
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Figure 3. Examples of the face image regions
used by the three observers.

observero is given by

αo
qs =

(
F o

q do
qs

)−1
(9)

wheredo
qs is the Euclidean distance between the query im-

ageq and its nearest neighbor in subject classs and the
normalization factorF o

q is given by

F o
q =

S∑
s=1

(do
qs)

−1, (10)

whereS is the number of subjects, so that

S∑
s=1

αo
qs = 1 (11)

With these definitions, the scoreαo
qs can be thought of as

an approximation to the probability that the query imageq
belongs to subject classs in the space seen by observero.
Without combining the observers, nearest neighbor classi-
fication is implemented for each observer individually by
simply selecting the subject class with the highest score.

3.3. Observer Combination

For each query imageq, the score data for each subject
s from each observero is passed to the combiner. Since
the score data has been normalized so that it approximates
a probability, a number of simple classifier combination
strategies [18] can be employed. In our implementation,
we employ the sum rule. As noted in [18], the assumptions
required to make the sum rule optimal are quite restrictive.
Despite this fact, the sum rule was reported to be the best
performing in [18] and also found to be so in our own ex-
periments. This is attributed in [18] to the sum rule being
more resilient to estimation errors. According to the sum
rule, a combined scorecqs for each subjects is computed
by simply adding the scores for subjects reported by each
observer:

cqs =
3∑

o=1

αo
qs. (12)

The subject with the highest combined score is then selected
as the classification result for the queryq.

In our implementation, we compute a confidence mea-
suremq as an additional combiner output. For a given query
imageq, let the best combined score be denotedcqs1 and the
next best combined score be denotedcqs2 . The confidence
measuremq is computed as the logarithm of the ratio of the
best score to the next best score:

mq = log
(cqs1

cqs2

)
. (13)

4. Experimental Results

We report here on the performance of the proposed algo-
rithm on a challenging face image database. The database
we constructed for our tests contained 676 images of 160
subjects from four different databases [1, 2, 19, 25] with sig-
nificant confounding factors including varying illumination,
expression, and decoration (primarily eyeglass changes).

A series of 100 training and classification runs were per-
formed. In each such run, 400 images were randomly se-
lected for training and the remaining 276 were used for
testing. The ratio of training images to testing images was
actually set to 0.50 for each subject, but we had an odd
number of images for the majority of our database subjects
and rounding up to the nearest integer gave the actual ra-
tio of about 0.59 (400/676) for training. The observers were
tested both individually and combined using PCA and LDA.
As the LDA spaces were of dimension 50, only 50 PCA
components, excluding the first three, were retained when
PCA-based classification was tested. The first three PCA
components were excluded because it has been shown pre-
viously [3] that these often capture much of the variation
due to illumination and/or other non-discriminative infor-
mation. As in [3], we found that excluding the first three
PCA components provided modest performance improve-
ments. Recognition performance is reported in Table 1 for
both LDA and PCA for each observer individually as well
as for each of the four possible combination scenarios. Ex-
amining the results 1, we note that the{1,2,3} and{1,3}
LDA combinations achieve the best overall rate of 94.2%,
which is a 3.3% improvement over the best individual ob-
server rate of 90.9%. This 3.3% improvement equates to
910 additional correct classifications of the 27,600 queries
in the 100 separate runs. Also note that Observer 3 – the
eyes region – provides the best individual performance for
both LDA and PCA. Finally, we note the significant perfor-
mance improvements of LDA over PCA in each case; the
low PCA performances indicate the challenging nature of
our database.

We now turn our attention briefly to the confidence mea-
sure discussed in Section 3.3 using our combined LDA sys-
tem. Referring to Fig. 4, we note the striking difference in



Observers PCA LDA
1 68.5 90.5
2 72.0 85.7
3 80.9 90.9

{1,2,3} 83.1 94.2
{1,2} 78.1 92.5
{1,3} 83.8 94.2
{2,3} 82.1 92.2

Table 1. Recognition performance reported as
correct classification percentage. The bot-
tom four entries employ classifier combina-
tion.

the confidence measure between the successes and failures.
Using this difference, we can actually reject decisions with
low confidence. The result of using the confidence ratio to
reject decisions is illustrated in Fig. 5 where the correct clas-
sification rate is plotted against the ratio of rejected images
for both PCA and LDA (all three observers were combined).
Note that with our parallel LDA observers, we can achieve
100% correct identification of the accepted images by re-
jecting only about 15% of the images. Using PCA, about
45% of the images would be rejected to achieve 100% cor-
rect classification on the remaining images.

5. Conclusions

In this paper, we have proposed a face recognition
algorithm that addresses three of the four confounding
factors – illumination, expression, and decoration – si-
multaneously. We additionally note how our approach
can easily be extended to work in the presence of varying
pose. The method proposed employs a parallel system of
LDA-based classifiers, referred to as observers, followed
by a simple classifier combination scheme. Results indicate
significantly improved accuracy over other methods. A
confidence measure is also reported and shown to be a
strong indicator of correct classification versus incorrect
classification.
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