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Outline

p Develop faster learning algorithms for neural nets
p Develop methodology to determine the confidence limits 

of results predicted by neural network models
p Obtain best estimates for network model parameters

u consistently combine experimental data (sensor measurements) 
with model output

p Significantly reduce the uncertainties underlying decision 
processes based on learning

p Apply new methodology to characterization of oil fields 

Funding for this task was provided by the DOE Office of Science under the
Frontiers in Intelligent Systems program



Artificial Neuromorphic Systems

Learning
Neural nets provide efficient 
solutions to challenging problems 
in pattern recognition, signal 
analysis, and real-time control of 
complex systems.
At the heart of such advances lies 
the development of very efficient 
methodologies for learning

Challenges 
u systematic treatment of uncertainty

u very slow learning for systems of 
realistic size

u convergence to local minima of 
error function

Oil Field Characterization
r Goal: given detailed  log data from  L1

and L2  and seismic survey data between 
wells,  estimate subsurface properties at x

r But, how  much  confidence  can one place 
in such network predictions obtained from 
sensor data corrupted by uncertainty ?

L2L1 x



Learning

p pioneering contributions of Grossberg, Werbos, Hopfield

p gradient-based techniques have provided the main computational mechanism 
for the optimization process
u excessive training times for large networks

p considerable efforts have been devoted by many groups to
s speed up rate of convergence

e.g., Barhen & Zak, IEEE Computer, 22, 67-76 (1989)
s compute more efficiently gradients

e.g., Barhen & Toomarian, Appl. Math. Lett., 3, 13-18  (1990)
e.g., Toomarian & Barhen, U.S Patent No.  5,930,781  (July 1999)

p novel approaches based on  linear algebraic methods pioneered by Biegler-
König and Bärman 

e.g., Barhen & Protopopescu, Neural Process. Lett., 11, 113-129  (2000)

Development of  neural  learning  algorithms is generally 
based upon the minimization of an energy–like neuromor-
phic error function



DeepNet  

Approach

Training Data
u given L training patterns {ΩLI , RLO}

s define K clusters: I^ K^ L : {ΩKI , RKO}
u compute nominal uncertainties for each cluster

Computational Model

I         V         O

ARCHITECTURE

( , )K O KI VO= WR WM

Wψ

Feedforward flow
I nodes input layer
V nodes virtual layer
O nodes output layer

K cluster patterns
Inputs:    ΩKI
Outputs: RKO 

Synaptic interconnections
WVO linear

ψ
nonlinear 

Unique feature

u virtual layer connected to input layer via non-
linear ψ transform (nonlinear weights)

u ψ maps ΩΚΙ into nonsingular matrix ΞKK

ΞKK = y ( ΩΚΙ )



DeepNet

BKB Network
u PKO = ΓKH WHO

u the learning algorithm minimizes 
the norm  yTKO –PKOy

u since ΓKH not known, one sweeps 
backwards, using initial WHO guess
ΓKH WHO= TKO = ΓKH ΡHH Ρ-1

HH WHO

u renormalization matrix ΡHH introduced 
to satisfy sigmoid constraints at HL

DeepNet 
u PKO = ΞKK WKO

u the learning algorithm minimizes 
the norm  yTKO –PKOy

u solves the system  
TKO =  ΞKK WKO

u since  TKO and ΞKK are known, we 
can compute WKO by SVD of  ΞKK

TKO = ρ -1(RKO )



DeepNet

u solve for          the system

u inversion of ΩKI introduces an
unavoidable loss of accuracy,  
since K p I

u forward sweep yields  PKO

u in virtual layer architecture the matrix 
Ξ is nonsingular

è new DeepNet methodology enables 
accurate ultrafast (single iteration) 
learning

1ˆ ( )KI IH KH HHϕ −Ω = ΓW R ( ) ( )
( )

( )( , ) 1
i i

k li
KK ik l

D

−
= −X

w w

( )1

( )
1 1

1 2 ( )
det( ) 0

2

iI K

KK i
i k

u k
D

−

= =

 
= > 

 
∏ ∏X

DeepNet
ˆ

IHW

BKB Network

1ˆ( )KO KI IH HH HOϕ −= ΩP W WR



Learning under Uncertainty 
Motivation

The methodology we are developing has two primary goals:
u determine confidence limits of neural net – predicted results
u consistently combine sensor measurements with computational results

t obtain best estimates of model parameters
t reduce uncertainties in estimates

How much confidence should be placed in decisions obtained on the basis of 
predictions from complex mathematical and / or physical models embedded in 
complex code systems?

Uncertainties
- input data

- outputs  

- model parameters

- sensor measurements

Code BCode A

Code C

Code D

Code E

Code F



Critical Requirements
for Learning under Uncertainty

We seek techniques based upon model sensitivities that enable robust 
learning and efficient error estimation from a neural network 

Such methods should incorporate five key capabilities
u guarantee that no  important effects are overlooked
è full set of sensitivities

u fast processing of large data sets
è efficient computation of sensitivities

u systematic treatment of nonlinearities

u inclusion, where relevant, of  time dependence
inputs, model parameters, responses

u comprehensive method for combining experimental (i.e., sensor) data
and model results; goal is to reduce the uncertainties

J. Barhen and V. Protopopescu, in 
DARS, 4 , 403-413, Springer (2000)

F. Aminzadeh and J. Barhen, Comp. 
& Geosci., 26 , 869-875 (2000)

F. Aminzadeh and J. Barhen, Petrol. 
Sci. & Eng., 24 , 49-56 (1999)



NOGA

Sensitivities
p provide a systematic way to propagate 

uncertainties in complex, non stationary, 
nonlinear models

system parameters:                  a = {W, ζ }
network computed responses: q = ρ(p)
experimental response:           r

p determine and rank the importance of  
parameters and input data to computed 
quantities of interest (system responses)

p computed using adjoint operator methods 
or automatic differentiation codes for 
recurrent nets

p nominal uncertainties quantified in terms 
of  covariance matrices

Bayesian Inference
p information fusion goal is to combine 

consistently computational results and 
measurements

p minimize a generalized Bayesian loss 
function with constraints

p optimization uses the inverse of the total 
covariance matrix as the natural metric of 
the calculational manifold

p solution of optimality equations yields best 
estimates for parameters and reduced
uncertainties
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Framework 
u Ability to predict location of 

remaining oil in neighborhood of 
existing production wells is of vital 
economic importance to petroleum 
industry

u Neural nets are used to capture the 
relationship between  seismic survey  
data and well logs

u Avoid costly drilling of new wells

u Demonstrate capability of DeepNet 
to capture this extremely complex 
nonlinear relationship  

Oil Field Characterization



DeepNet Results
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DeepNet prediction of  best-estimates: porosity
Data: B10_5S (well B10)
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Data: B10_5S (well B10)
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Summary

We have developed new methods for neural net learning under 
uncertainty

è ultrafast (single iteration) DeepNet neural net learning code provides the 
computational framework for modeling

è information fusion module NOGA uses sensitivity matrices in conjunction 
with minimization of a constrained generalized Bayesian loss function to 
combine model prediction and experimental results

è best-estimates for model parameters and reduced uncertainties

DeepNet / NOGA are providing enabling capabilities for several 
CESAR basic research activities

u prediction of pseudo-logs in the neighborhood of petroleum reservoir wells
t tracking in cooperating robots
t pattern classification using quantum dot arrays
t synchronization of arrays of lasers


