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Abstract

We investigate the entwined roles of information and quantum algorithms in re-
ducing the complexity of the global optimization problem (GOP). We show that: (i)
a modest amount of additional information is su±cient to map the general continu-
ous GOP into the (discrete) Grover problem; (ii) while this additional information is
actually available in some classes of GOPs, it cannot be taken advantage of within
classical optimization algorithms; (iii) on the contrary, quantum algorithms o®er a
natural framework for the e±cient use of this information resulting in a speed-up of
the solution of the GOP.
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1 Global Optimization Problem

Optimization problems are ubiquitous and extremely consequential. The theoretical and
practical interest they have generated has continued to grow from the ¯rst recorded instance
of Queen Dido's problem [13] to present day forays in complexity theory or large scale
logistics applications (see Refs. [14], [9], [8], [6], and references therein). The formulation
of almost any optimization problem is deceptively simple: ¯nd the absolute minimum
(maximum) of a given function - called the objective function or functional - over the
allowed range of its variables. Sometimes, the function to be optimized is not speci¯ed
in analytic form and must be evaluated point-wise by a computer program, a physical
device, or other construct. Such a black-box tool is called an oracle. Of course, the brute
force approach of evaluating the function on its whole domain is either impossible - if
the variables are continuous - or prohibitively expensive - if the variables are discrete,
but have large ranges in high dimensional spaces. Since in general each oracle invocation
(function evaluation) involves an expensive computational sequence, the number of function
evaluations needs to be kept to a minimum. The number of invocations of the oracle
measures the query complexity of the problem and gives a fair - although by no means
unique - idea of its di±culty or \hardness" [5]. Therefore, the number of oracle invocations
is one of the paramount criteria in comparing the e±ciency of competing optimization
algorithms.

The primary di±culty in solving the GOP stems from the fact that the familiar condi-
tion for determining extrema (namely, annulment of the gradient of the objective function)
is only necessary (the function may have a maximim, a minimum, or not have an extremum
at all !) and local (it does not distinguish between local and global extrema). Indeed, the
generic strategy to ¯nd the global minimum involves two main operations, namely: (i)
descent to a local minimum and (ii) search for the new descent region. Usually, the former
operation is deterministic and the latter stochastic. This strategy is marred by additional
problems. First, descent assumes a certain degree of smoothness, which is not always war-
ranted. When the dimensionality of the problem is large, the search of the phase space
becomes more and more responsible for increasing the query complexity of the problem.
Finally, after determining a local minimum, the algorithm is usually trapped in it and
special operations have to be designed to restart the search. The \hardness" of the GOP
is well illustrated by the following example for which the approach described above seems
powerless. De¯ne the function f : [0; 1]! f0; 1g as follows:

f (x) =

8
><
>:

1 for 0 · x · a ¡ ²=2
0 for a ¡ ²=2 < x < a+ ²=2

1 for a+ ²=2 · x · 1:
(1)

where a 2 (²=2; 1 ¡ ²=2). To obtain the minimum of this function, one should evaluate
it within the ² interval around the unknown number a. If this function is de¯ned like an
oracle (i.e., if one does not know the position of the point a), the probability of choosing
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an x within this interval is ². For the n-dimensional version of this oracle, the proba-
bility becomes ²n, and the complexity of the problem grows exponentially with n (the
dimensionality curse). Of course, this is an extreme case, for which knowledge about the
derivatives (they are all zero whenever de¯ned !) would not help. This and related issues
have been deftly discussed by Wolpert and Macready in connection with their \No Free
Lunch" (NFL) theorem [15].

In the light of the previous example, it seems that without additional knowledge about
the structure of the function there is no hope to decide upon an intelligent optimization
strategy and one is left with either strategies that have limited albeit e±cient applicability
or the exhaustive search option.

Thus, new approaches are needed to reduce the complexity of the problem to manage-
able complexity. Recently, quantum computing has been hailed as the possible solution
to some of the computationally hard classical problems [11]. Indeed, Grover's [7] and
Shor's [12] algoritms provide such solutions to the problems of ¯nding a given element in
an unsorted set and the prime factorization of very large numbers, respectively. Here we
present a solution to the continuous GOP in polynomial time, by developing a generaliza-
tion of Grover's algorithm to continuous problems. This generalization requires additional
information on the objective function. In many optimization problems, some of this ad-
ditional information is available (see below). While other required information may be
more di±cult to obtain in practical applications, it is important to understand - from a
theoretical point of view - the role of the information in connection to the di±culty of
the problem, and to be able to assess a priori what various information is relevant and
for what. For instance, if the objective function were an analytic function, the knowledge
of all its derivatives at a given point would allow, in principle, the \knowledge" of the
function everywhere else in the domain of analyticity. However, to actually ¯nd the global
minimum, the function would still have to be calculated everywhere ! In other words, the
(additional) knowledge of all the derivatives at a given point cannot be e±ciently used to
locate the global minimum, although in principle it is equivalent to the knowledge of the
function at all points. In fact, to locate the global minimum, both methods would require
exhaustive calculations.

2 Grover Quantum Algorithm

A quantum computation is a sequence of unitary transformations on the initial state of the
wave function, Ã. As such, quantum computation is purely deterministic and reversible.
It requires the initialization or preparation of the initial state, the actual \computation"
and the read out of the result e®ected through a measurement of the ¯nal state. If the
algorithm is e±cient, then, with probability (much) higher than 1=2, the measurement
would collapse the ¯nal state onto the desired result. Computer architectures needed to
implement classical or quantum algorithm are realized in terms of gates. As opposed to
classical gates that operate on bits taking values in the set f0, 1g, quantum gates operate
on normalized vectors in a ¯nite-dimensional complex Euclidian space. In principle, any
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quantum computer can be viewed as an assembly of elementary quantum gates, such as

the NOT and CNOT gates. The NOT gate is the 2 £ 2 matrix

Ã
0 1
1 0

!
. It acts on a

qubit, q, which is the normalized state in a two dimensional Euclidian space, IC2:

q = ®j0 > +¯j1 >; j®j2 + j¯j2 = 1; (2)

by exchanging the level populations. The CNOT gate acts on four dimensional vectors
in IC4. Obviously, some of these vectors can be represented as a tensor product of two
two-dimensional vectors; however other vectors in IC4 cannot be written in this form. These
latter states are called entangled states and play a crucial role in quantum algorithms
[11]. Quantum algorithms are (i) intrinsically parallel and (ii) yield probabilistic results.
These properties re°ect the facts that: (i) the wave function, Ã, is nonlocal and, in fact,
ubiquituous and (ii) the quantity jÃj2 is interpreted as a probability density.

Grover's original algorithm provides a solution to the following problem. Suppose we
have a set ofN unsorted objects, E = fx1; x2; :::xNg, and an oracle function f : E ! f0; 1g,
such that f (x1) = 1 and f(xi) = 0, i = 2; :::N: Using the oracle, ¯nd the element x1 in the
unsorted set E.

On average, the classical solution will involve » N=2 »O(N) evaluations of the oracle.
The quantum algorithm proposed by Grover [7] reduces this number to O(

p
N). In a

generalized version of the problem, there may be L \special" elements for which the oracle
returns the value one; then the number of evaluations required to ¯nd one of them is of

the order O(
q
N=L).

We give a brief presentation of Grover's quantum algorithm [7]. First, we identify the
set E with the complex Euclidean space ICN and the elements xi 2 E with the unit vectors
in ICN, < xijxj >= ±ij, where ±ij is the Kronecker symbol. Then construct the normalized
average state of all the elements jxi >:

jw >=
1p
N

NX

i=1

jxi >=
1p
N
jx1 > +

p
N ¡ 1p
N
jx?1 > : (3)

In the second representation, the unit vectors orthogonal to jx1 > are lumped together
in the unit vector jx?1 >, which formally reduces the problem to a bidimensional space and
simpli¯es the presentation and interpretation of the algorithm.

We note that the scalar product < x1jw >= 1p
N

:= cos¯ = sin® where ¯ denotes the

angle between the vectors jw > and jx1 > and ® denotes its complement, i.e. the angle
between the vectors jw > and jx?1 >.

The construction of the state jw > can be done in log2N = n steps by applying

(in parallel) n Hadamard transformations, H = 1p
2

Ã
1 1
1 ¡ 1

!
on the initial zero state,

j0 > ­::::::­ j0 >| {z }
n times

. In the fjx1 >; jx?1 >g basis, we construct the operators:
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Ix1 := I ¡ 2jx1 >< x1j =
Ã
¡I O
O I

!
; (4)

which executes a re°ection (sign inversion) of the x1-component of a vector and

Iw := I ¡ 2jw >< wj =
Ã

I ¡ 2=N ¡ 2
p
N ¡ 1=N

¡2
p
N ¡ 1=N ¡ I + 2=N

!
; (5)

which represents a re°ection (sign inversion) of the w-component of a vector. At the level of
the oracle, the operator Ix1 is implemented by (¡1)f(:)(:), which does not depend explicitly
on the unknown element x1, while the application of the operator Iw is obvious, since the
average state is known. We de¯ne now the amplitude ampli¯cation operator:

Q := ¡IwIx1 =

0
@

I ¡ 2=N 2
p
N ¡ 1=N

¡2
p
N ¡ 1=N I ¡ 2=N

1
A =

0
@

cos2® sin2®

¡sin2® cos2®

1
A (6)

which, in the compressed, two-dimensional representation of the problem, represents a ro-
tation of the state vector with an angle 2® towards jx1 >. This means that each application
of the operator Q will increase the weight of the unknown vector jx1 > (which explains

the name of the operator Q) and after roughly ¼=2¡®
2®
» ¼=2¡1=

p
N

2=
p
N
» ¼

4

p
N applications the

state vector will be essentially parallel to jx1 >, whereupon a measurement of the state
will yield the result jx1 > with a probability very close to unity. We mention that for
(and only for) N = 4, the result is obtained with certainty, after only one application. In
general, if one continues the application of Q, the state vector continues its rotation and
the weight of jx1 > decreases; eventually, the evolution of the state is cyclic as prescribed
by the unitary evolution. In the original, N-dimensional representation, the operator Iw
has the representation:

Iw =

0
BBBB@

I ¡ 2=N 2=N : : : 2=N
2=N I ¡ 2=N : : : 2=N
...

. . .
...

2=N : : : I ¡ 2=N

1
CCCCA
: (7)

Using this representation, it is easy to show explicitly that the algorithm can be imple-
mented as a sequence of local operations such as rotations, Hadamard transforms, etc.
[7]

It is easy to check that if the oracle returns the same value for all the elements, i.e. there
is no \special" element in the set E, the ampli¯cation operator Q reduces to the identity
operator I and, after the required number of applications, the measurement will return
any of the states with the same probability, namely 1=N . In other words, the algorithm
behaves consistently.
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3 Solution of the Continuous Global Optimization

Problem

Grover's algorithm has been applied previously to a discrete optimization problem, namely
¯nding the minimum among an unsorted set of N di®erent objects. DÄurr and Hoyer
[4] adapted Grover's original algorithm and solved this problem with probability strictly
greater than 1=2 using O(

p
N ) function evaluations (oracle invocations).

In this article, we map the continuous GOP to the Grover problem. Once this is
achieved, one can apply either Grover's algorithm and obtain an almost certain result with
O(
p
N) function evaluations. However, the mapping of the GOP to Grover's problem is

not automatic, but requires additional information.

Before spelling out the required information, let us revisit the "pathological" example
(1). Without loss of generality, we can take ² = 1=N and divide the segment [0; 1] into N
equal intervals. By evaluating the function at the midpoint of the N intervals, we obtain a
discrete function that is equal to 1 in N ¡ 1 points and equal to 0 in one point, which - up
to an unessential transformation - is equivalent to Grover's problem. Direct application of
any Grover-like algorithm yields the corresponding result. Of course, generalization to any
dimensionality d is trivial. A problem that seemed intractable classically becomes much
easier within the quantum computing framework. We shall return to this example after
discussing the general case.

Consider now a real function of d variables, f(x1; x2; ::::; xd). Without restricting gen-
erality, we can assume that f is de¯ned on [0; 1]d and takes values in [0; 1]. Assume now
that: (i) there is a unique global minimum which is reached at zero; (ii) there are no local
minima whose value is in¯nitesimally close to zero; in other words, the values of the other
minima are larger than a constant ± > 0, and (iii) the size of the basin of attraction for
the global minimum measured at height ± is known; we shall denote it ¢.

Then our implementation paradigm is the following: (i) instead of f(:), consider the
transformation g(:) := (f(:))1=m. For su±ciently large m, this function will take values very
close to one, except in the vicinity of the global minimum, which will maintain its original
value, namely zero. Of course, other transformations can be used to achieve essentially the
same result. We calculate m such that ±1=m = 1=2. To avoid technical complications that
would not change the tenure and conclusions of the argument, we assume that ¢ = 1=M
where M is a natural number, and divide the hypercube [0; 1]d in small d-dimensional
hypercubes with sides ¢. At the midpoint of each of these hypercubes, de¯ne the function
h(x) := int[g(:) + 1=2] (here int denotes the integer part). The function h(:) is de¯ned on
a discrete set of N points, N = M d, and takes only values one and zero; by our choice
of constants, the region on which it takes value zero is a hypercube with side ¢. Thus
we have reduced the problem to the Grover setting. Application of Grover's algorithm
to the function h(:), will result in a point that returns the value zero; by construction,
this point belongs to the basin of attraction of the global minimum. We return then
to the original function f (:) and apply the descent technique of choice that will lead to
the global minimum. If the basin of attraction of the global minimum is narrow, the
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gradients of the function f (:) may reach very large values which may cause overshots.
Once that phase of the algorithm is reached, one can proceed to apply a scaling (dilation)
transformation that maintains the descent mode but moderates the gradients. On the
other hand, as one approaches the global minimum, the gradients become very small and
certain acceleration techniques based on non-Lipschitzian dynamics may be required [1, 2].
If the global minimum is attained at the boundary of the domain, the algorithm above will
¯nd it without additional complications.

4 Practical Implementation Considerations

It is clear that, in general, the conditions imposed on the functions f(:) are rather strong,
su±cient conditions. However: (a) these conditions are both satis¯ed and explicitly given
for the academic \golf course" example mentioned before and (b) while they do not help
reduce the complexity of the classical descent/search algorithm, they make a remarkable
di®erence in the quantum framework.

In fact, assumption (i) is satis¯ed by a large class of important practical problems,
namely parameter identi¯cation encountered e.g. in remote sensing, pattern recognition,
and, in general, inverse problems. In these problems the absolute minimum, namely zero,
is attained for the correct values of the parameters, matching of patterns, and ¯tting of
output to input. Assumption (i) can be relaxed in the sense that the function may have
multiple global minima, all equal to zero. Functions with multiple global minima will
simply result in Grover problems with multiple \special" elements and can be treated
accordingly if the number of global minima is known.

Assumption (ii) can be replaced with the much more reasonable assumption that f has
a ¯nite number of local minima. This would prevent the value of any local minimum to be
in¯nitesimally close to the value of the global minimum.

Assumption (iii) is the most di±cult to ful¯ll in practical problems. However, this
assumption could also be relaxed with no signi¯cant performance loss if more e±cient (e.g.
exponentially fast) unstructured search quantum algorithms were available [10]. For the
time being, the likelihood of exponentially fast search algorithms is uncertain.

Recently, Chen and Diao [3], proposed an algorithm which was supposed to achieve
an exponential (as opposed to polynomial) speed-up of the unstructured search. Unfor-
tunately, subtle complexity hidden in one of the proposed steps makes this algorithm
unusuitable for very fast search.

Despite their scarcity and still elusive implementation in a practical quantum computer,
quantum algorithms could bring very promising solutions to hard computational problems.
It seems likely that - like the algorithms proposed so far - future quantum algorithms will
be much more \problem tailored" than their classical counterparts. Therefore, speci¯c
additional information is crucial. In general, this information may be di±cult to obtain,
but - as illustrated above - its bene¯ts may signi¯cantly outweigh its cost. Indeed, for very
high dimensional, computationally intensive problems, even the polynomial reduction of
complexity o®ered by the Grover algorithm is extremely signi¯cant.
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