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Abstract:
The two center time dependent Dirac equation, for an electron in the ex-

ternal ¯eld of two colliding ultrarelativistic heavy ions is considered. In the
ultrarelativistic limit, the ions are practically moving at the speed of light and
the electromagnetic ¯elds of the ions are con¯ned to the light fronts by the
extreme Lorentz contraction and by the choice of gauge, designed to remove
the long-range Coulomb e®ects. An exact solution to the ultrarelativistic
limit of the two-center Dirac equation is found by using light-front variables
and a light-fronts representation. Previously unexplained experimental re-
sults obtained at CERN's SPS are explained in this way and predictions
are made as to where one should look, in momentum space, and in space-
time, if one wants to study and observe non-perturbative electromagnetic
pair-production e®ects in extremely relativistic heavy-ion collisions.
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1 Introduction

Consider the relativistic scattering problem of an electron in the external ¯eld
of two point-like charges (ions), moving on parallel, straight-line trajectories
in opposite directions at speeds which approach the speed of light, and at an
impact parameter 2~b. An external-¯eld approach to the in°uence of the ions
on the electron is appropriate for peripheral impact parameters, heavy-ions,
and high energies, where, to a very good approximation, the ions travel on
parallel, straight-line trajectories, and ion recoil is negligible.

We review here our recent work on this problem [1, 2, 3]. In section 2, fol-
lowing Ref. [2], we show that the two center time dependent Dirac equation
for the electron reduces in the high energy limit to Eq. (26) with the inter-
actions of Eq. (29). In section 3, following Ref. [1], we solve this equation o®
the light fronts i.e. for an electron that both initially and asymptotically is
not co-moving with an ion. The main result of our work is the transition am-
plitude given by Eqs. (90) and (67). In section 4, we discuss the application
of this solution to electromagnetic pair production in heavy ion collisions,
which we have used, for example, in Ref. [3], to explain recent experimental
results. We note that one should distinguish between electron-positron pairs
produced so that they are co-moving with the ions and those that are not.
The two cases di®er experimentally. They also di®er theoretically, because
they are described by di®erent asymptotic boundary conditions. We have
solved the problem only for electron-positron pairs that are not co-moving
with the ions. Our solution to the two center Dirac equation in the high
energy limit was con¯rmed by di®erent methods, including a Green function
approach [4], and resummation of the perturbation series [5]. The application
to pair production on the other hand, has raised some controversy, which is
also discussed in section 4. Section 5 concludes.

2 Two-center Dirac equation

We are using natural units (c = 1, me = 1, and ¹h = 1). The quantity
® is the ¯ne-structure constant, ·® and ·°¹ are Dirac matrices in the Dirac
representation, as in Ref. [6]; and I2, 02, I4, and 04 are the 2-dimensional and
4-dimensional unit and zero matrices.

We study relativistic heavy-ion collisions with a single active electron, e.g.
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we neglect electron-electron interactions in comparison to the strong electron-
ion interactions. For electrons distant from both the ions at asymptotic times,
the collider (i.e. center-of-velocity) inertial frame is a natural choice. In the
transverse direction, the origin of the collider frame is located equidistant
from the target and projectile trajectories. The position vector of the electron
in the collider frame is ~r = (x; y; z), and the associated time is t.

The free-particle Dirac equation has the form

i
@

@t
jÁ(~r ; t)i = Ĥ0jÁ(~r ; t)i ; (1)

where Ĥ0 is the free Dirac Hamiltonian,

Ĥ0 ´ ¡i·® ¢ ~r + ·°0 : (2)

The Dirac plane waves fjÁp(~r; t)i = exp(¡iEpt) exp(i~r ¢ ~p)jupig which satisfy
the free Dirac equation are each characterized by the quantum numbers p ´
f~p; ¸p; spg; the momentum ~p, the sign of the energy Ep = (¡1) p̧

p
p2 + 1,

and the spin sp = §. Explicit forms for the four four-spinors jupi are given
in Ref. [6, 7, 8].

The two-center, time-dependent Dirac equation in the collider frame for
an electron interacting with both colliding ions is

i
@

@t
jª(~r ; t)i =

h
Ĥ0 + ĤB(t) + ĤA(t)

i
jª(~r ; t)i ; (3)

where jª(~r ; t)i is the Dirac spinor wave function of the electron, ĤB(t) is the
electron-target interaction, and ĤA(t) is the electron-projectile interaction,

ĤB(t) ´ ¡ZB®°(I4 + ¯c·®z)q
(~r? +~b=2)2 + °2(z + ¯ct)2

; (4)

ĤA(t) ´ ¡ZA®°(I4 ¡ c̄ ·®z)q
(~r ? ¡ ~b=2)2 + °2(z ¡ ¯ct)2

: (5)

2.1 Asymptotic solution

Consider, in the collider frame, at asymptotic times, an electron distant from
both the target and projectile ions. The electron-projectile and electron-
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target distances then have the following asymptotic limits,

lim
jtj!1

rA(~r ; t) ´ r1A (~r ; t) =
q

(b=2)2 + °2(z ¡ ¯ct)2 ;

lim
jtj!1

rB(~r ; t) ´ r1B (~r ; t) =
q

(b=2)2 + °2(z + ¯ct)2 : (6)

Using these distances, the asymptotic, two-center Dirac equation is

i
@

@t
j©1(~r ; t)i =

h
Ĥ0 + Ĥ1B (t) + Ĥ1A (t)

i
j©1(~r ; t)i ; (7)

where j©1(~r ; t)i is the Dirac spinor wave function of the electron asymptotic
channel solution, Ĥ1B (t) is the asymptotic electron-target interaction, and
Ĥ1A (t) is the asymptotic electron-projectile interaction,

Ĥ1B (t) ´ ¡ZB®°(I4 + ¯c·®z)q
(b=2)2 + °2(z + ¯ct)2

; (8)

Ĥ1A (t) ´ ¡ZA®°(I4 ¡ c̄ ·®z)q
(b=2)2 + °2(z ¡¯ct)2

: (9)

For the solutions of Eq. (7), consider an ansatz of a space-time dependent
phase factor times a Dirac plane-wave state.

j©1(~r ; t)i = e¡iÂ(z;t)jÁ1(~r ; t)i ; (10)

where

Â(z; t) ´ ZA®

¯
ln
·
°(z ¡ c̄t) +

q
(b=2)2 + °2(z ¡ ¯ct)2

¸

¡ ZB®

¯
ln
·
°(z + ¯ct) +

q
(b=2)2 + °2(z + ¯ct)2

¸
: (11)

Substituting Eq. (11) into Eq. (7), multiplying from the left by e+iÂ(z;t), and
collecting like terms gives

i
@

@t
jÁ1(~r ; t)i =

2
4Ĥ0 +

Ã
1

°2¡ 1

!
ZB®°¯c·®zq

(b=2)2 + °2(z + ¯ct)2

¡
Ã

1

°2 ¡ 1

!
ZA®°¯c·®zq

(b=2)2 + °2(z ¡ ¯ct)2

3
5 jÁ1(~r ; t)i : (12)
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The scalar component of the asymptotic electron-projectile and electron-
target interactions cancel exactly, and the vector component vanishes in the
¯c ! 1 limit. In this limit, the remaining equation is identical to the free
Dirac equation, Eq. (1), and jÁ1(~r ; t)i ! jÁ(~r ; t)i, is a Dirac plane-wave
eigenstate. We conclude that in the extreme, high-energy limit, the ansatz
in Eq. (10) with the Dirac plane wave, is the exact solution to the asymptotic,
two-center Dirac equation, Eq. (7),

lim
¯c!1
j©1(~r ; t)i = e¡iÂ(z;t)jÁ(~r ; t)i : (13)

2.2 De¯nition of transition amplitudes

Following the notation of Ref. [9], let jª(+)
j (tf)i be the exact outgoing-wave

solution evolving from an initial channel solution j©1j (ti)i, i.e.

lim
t!¡1

jª(+)
j (t)i = j©1j (t)i ; (14)

and j©1k (tf)i be the ¯nal asymptotic channel. Then, by de¯nition, the exact
transition amplitude between these two channels is given in the post form as

A(+)
kj = lim

tf!1
h©1k (tf)jª(+)

j (tf)i : (15)

The prior form of the amplitude is de¯ned at t ! ¡1 as the projection of
the exact incoming wave solution jª(¡)

j (ti)i evolving backward in time from
the ¯nal channel j©1k (tf)i, i.e.

lim
t!1
jª(¡)

k (t)i = j©1k (t)i ; (16)

onto the initial channel solution j©1j (ti)i,

A(¡)
kj = lim

ti!¡1
hª(¡)

k (ti)j©1j (ti)i : (17)

The post and prior forms of the amplitude may be uni¯ed using the time-
evolution operator Û (tf ; ti) to relate the full outgoing-wave (incoming-wave)
solution to its initial (¯nal) state as

jª(+)
j (tf)i = Û(tf ; ti)j©1j (ti)i
jª(¡)

k (ti)i = Ûy(tf ; ti)j©1k (tf )i : (18)
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Inserting Eqs. (18) into Eq. (15) or Eq. (17), one obtains,

A(j)
k = lim

ti!¡1
tf!1

h©1k (tf)jÛ(tf ; ti)j©1j (ti)i : (19)

2.3 Short-range representation

The factored forms of the asymptotic solutions to the two-center Dirac equa-
tion, Eq. (13), obtained in the previous section, invite the de¯nition of a new
representation for the time-dependent Dirac equation. In this section, we
introduce this representation, which we call the short-range representation.

Consider the extreme, high-energy limit ¯c ! 1 of the two-center Dirac
equation in the collider frame, Eq. (3), so that the asymptotic channels for an
electron interacting with a distant target and projectile ion has the factored
form of Eq. (13). We substitute this solution into the expression for the
transition amplitudes for the initial state j and ¯nal state k,

A(j)
k = lim

ti!¡1
tf!1

he¡iÂ(z;tf )Á(k)(tf )jÛ(tf ; ti)je¡iÂ(z;ti)Á(j)(ti)i : (20)

Rearranging the exponential factors in the expression so that they are applied
directly to the evolution operator, one obtains,

A(j)
k = lim

ti!¡1
tf!1

hÁ(k)(tf)je+iÂ(z;tf)Û(tf ; ti)e
¡iÂ(z;ti)jÁ(j)(ti)i : (21)

De¯ning the short-range representation,

jª(S)(~r ; t)i ´ e+iÂ(z;t)jª(~r ; t)i (22)

Û (S)(tf ; ti) ´ e+iÂ(z;tf )Û(tf ; ti)e
¡iÂ(z;ti) : (23)

gives the formal expression of a transition amplitude between plane-wave
states,

A(j)
k = lim

ti!¡1
tf!1

hÁ(k)(tf)jÛ(S)(tf ; ti)jÁ(j)(ti)i : (24)

To obtain the two-center Dirac equation in the collider frame in the short-
range representation, we begin with Eq. (3), and make the substitution

jª(~r ; t)i = e¡iÂ(z;t)jª(S)(~r ; t)i : (25)
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After multiplying from the left by e+iÂ(z;t), the equation of motion has the
form

i
@

@t
jª(S)(~r ; t)i =

h
Ĥ0 + ŴB(t) + ŴA(t)

i
jª(S)(~r ; t)i ; (26)

where ŴB(t) and ŴA(t) are the time-dependent electron-target and electron-
projectile interactions in the short-range representation,

ŴB(t) ´ ĤB(t) ¡ ¡ZB®°(I4 + (1=¯c)·®z)q
(b=2)2 + °2(z + ¯ct)2

;

ŴA(t) ´ ĤA(t) ¡ ¡ZA®°(I4 ¡ (1=¯c)·®z)q
(b=2)2 + °2(z ¡ c̄t)2

: (27)

In the high-energy limit, ¯c ! 1, and

lim
¯c!1

ŴB(t) ´ ĤB(t) ¡ Ĥ1B (t) ;

lim
¯c!1

ŴA(t) ´ ĤA(t)¡ Ĥ1A (t) : (28)

The asymptotic dependence of the time-dependent interaction has been can-
celed exactly (in the ¯ ! 1 limit). Likewise, the phase distortion in the
asymptotic channel solutions is canceled by the phase transformation de¯ning
the short-range representation, and the asymptotic channels are e®ectively
the Dirac plane waves.

Applying the sharp limit of ¯c ! 1; r?; b ¿ ° to Eqs. (28), we obtain
the following factored forms for the time-dependent interaction [10, 11, 1],

lim
¯c!1

r?;b¿°
ŴB(t) = (I4 + ·®z)ZB®±(t + z) ln

2
4(~r ? +~b=2)2

(b=2)2

3
5 ;

lim
¯c!1

r?;b¿°
ŴA(t) = (I4¡ ·®z)ZA®±(t¡ z) ln

2
4(~r ? ¡~b=2)2

(b=2)2

3
5 : (29)

Consider the physical nature of this limit. A ± function over time alone
would indicate a sudden interaction of the ions with the electron. In the
gauge-transformed equation, as they move, the ions are continuously inter-
acting with the electronic wave function. Naturally, this interaction is singu-
lar on the trajectories of the ions, as it was before the ultrarelativistic limit
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has been taken; but an additional singularity is induced in the ultrarelativis-
tic limit by the extreme Lorentz contraction of the ¯eld. In this limit, the
interaction is in¯nite on the two planes perpendicular to the ions trajectories,
and vanishes elsewhere.

The interactions have zero range in the longitudinal direction and a log-
arithmic behavior in the transverse direction, similar to the potential of a
line of charge. In the limit ¯c ! 1, the two ions are moving at the speed of
light and thus the interaction planes described above coincide with the light
fronts, given by z = §t . Finally, we note that (I4 § ·®z)=2 are orthonormal
projection operators. The 4-Dirac spinor wave function of the electron can
be decomposed into two orthogonal components,

jª+(~r; t)i ´ 1

2
(I4 + ·®z)jª(S)(~r; t)i (30)

jª¡(~r; t)i ´ 1

2
(I4 ¡ ·®z)jª(S)(~r; t)i: (31)

Each ion interacts directly only with one of these components; ZA with
jª¡(~r; t)i and ZB with jª+(~r; t)i.

3 Light-fronts representation

In this section, the two-center time-dependent Dirac equation will be further
simpli¯ed and solved by changing into light-front variables and by introducing
a new representation for the Dirac spinors, the light-fronts representation.
This is an appropriate choice of variables and representation, since, in the
ultrarelativistic limit the interactions are con¯ned to the two light fronts.

3.1 De¯nitions and notations

In terms of light-front variables, space-time and energy-momentum are de-
scribed by the 4-vectors (~r?; ¿+; ¿¡) and (~p?; p+; p¡), where

¿§ ´ (t § z)=2 (32)

p§ ´ Ep § pz (33)

p+p¡ = 1 + p2
? (34)
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The sign and absolute value of (p+ +p¡)=2 are ¸p and "p, respectively. Equa-
tion (34) de¯nes the energy-shell. These variables were often used previously
for quantization on one of the two light fronts, ¿+ = 0 or ¿¡ = 0 [12]. For
the problem considered here, it is useful to keep the symmetry between ¿+

and ¿¡.
The projection operators (I4§ ·®z)=2 acquire a simple form and the inter-

action is diagonalized by introducing the light-fronts representation for the
Dirac matrices,

°¹light¡fronts = ¤°¹Dirac¤
y; (35)

¤ ´ 1p
2

Ã
I2 ¾̂z
I2 ¡ ¾̂z

!
; (36)

¤·®z¤
y =

Ã
I2 02

02 ¡ I2

!
; (37)

¤
·1

2
(I4 + ·®z)

¸
¤y =

Ã
I2 02

02 02

!
; (38)

¤
·1

2
(I4 ¡ ·®z)

¸
¤y =

Ã
02 02

02 I2

!
; (39)

¤·~®?¤y = i

Ã
02 ¡ ·~!
·~! 02

!
; (40)

·~! ´ (¡·¾y; ·¾x): (41)

With this notation, the gauge-transformed two-center Dirac equation in
the sharp ultrarelativistic limit in the light-fronts representation is

Ã
i@¿+ jG+i
i@¿¡jG¡i

!
=

Ã
±(¿+)B(~r?;~b) ĥ0

ĥy0 ±(¿¡)A(~r?;~b)

! Ã
jG+i
jG¡i

!
; (42)

where jG+i and jG¡i are the upper and lower bi-spinor components of the
Dirac wave function in the light-fronts representation

Ã
jG+i
jG¡i

!
´ ¤jªi; (43)

and

ĥ0 ´ I2 ¡ i·~! ¢ ~̂p?; (44)
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A(~r?;~b) ´ ZA® ln

2
4(~r? ¡~b)2

b2

3
5 ; (45)

B(~r?;~b) ´ ZB® ln

2
4 (~r? +~b)2

b2

3
5 : (46)

The upper and lower bi-spinors are coupled by the free Hamiltonian. Each
interacts directly with the external ¯eld of one ion and feels the ¯eld of the
other ion through its coupling to the other bi-spinor.

Equation (42) has no discontinuities in the transverse direction. It is
therefore useful to Fourier transform its solution with respect to ~r?. Two
mixed bi-spinors wave-functions, jg§(~q?; ¿+; ¿¡)i, are then de¯ned by

jG§(~r?; ¿+; ¿¡)i ´
Z
d~q?e

i~r? ¢~q?jg§(~q?; ¿+; ¿¡)i: (47)

jg+i and jg¡i, like jG+i and jG¡i, are coupled by the free Hamiltonian.

3.2 Free Dirac equation o® the light fronts

O® the light fronts, i.e. for ¿+ 6= 0 and ¿¡ 6= 0, the wave function satis¯es
the free Dirac equation and Eq. (42) reduces to two coupled equations for
the mixed bi-spinors jg§(~q?; ¿+; ¿¡)i.

i
@

@¿+
jg+i = (I2 ¡ i·~! ¢ ~q?)jg¡i; (48)

i
@

@¿¡
jg¡i = (I2 + i·~! ¢ ~q?)jg+i: (49)

The second-order equations decouple

@2

@¿+@¿¡
jg§i = ¡(1 + q2

?)jg§i; (50)

where use was made of

(I2¡ i·~! ¢ ~q?)(I2 + i·~! ¢ ~q?) = (1 + q2
?)I2: (51)
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A solution to Eqs. (48, 49) is given, for example, by the plane waves which
in the light-fronts representation are given by

Ã
jF p+i
jF p¡i

!
´ ¤jÁ(p)(~r; t)i; (52)

jF p§i ´
Z
d~q?e

i~r? ¢~q?jf p§(~q?; ¿+; ¿¡)i; (53)

jfp§(~q?; ¿+; ¿¡)i = ±(~q? ¡ ~p?)e¡i(¿¡p++¿+p¡)j¡p§i: (54)

The bi-spinors, j¡p§i, (the upper and lower parts of ¤jupi),

j¡p§i =
(2¼)¡3=2

2
q
"p(1 + "p)

£
h
I2
³
1 + (¡1) p̧p§

´
¨ i·~! ¢ ~p?

i
(§·¾z)

¸pjspi; (55)

satisfy the simple relation

j¡p¡i =
I2 + i·~! ¢ ~p?

p+

j¡p+i: (56)

These plane waves solve Eq. (42) o® the light fronts in the limits t ! §1.
They do not solve it for ¯nite t, when ~p? is no longer a good quantum
number, as the singular interaction with the ions makes the wave function
discontinuous at the light fronts.

3.3 The discontinuity across the light fronts

The discontinuities of the spinor wave function at the light fronts (at ¿+ = 0
and at ¿¡ = 0, excluding only ¿+ = ¿¡ = 0) are deduced from Eq. (42). At
one light front, (¿+ = 0, ¿¡ 6= 0), Eq. (42) for jG+i reads,

i@¿+ jG+i = ĥ0jG¡i + B(~r?)±(¿+)jG+i : (57)

The ±-function singularity renders jG+i discontinuous at ¿+ = 0, as can be
seen by integrating both hand sides of Eq. (57) with respect to ¿+ from ¡²
to ² and taking the limit ²! 0,

jG+(¿+ = 0+)i 6= jG+(¿+ = 0¡)i: (58)
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An auxiliary bi-spinor can be de¯ned by a piece-wise gauge transformation,

j ~G+i ´ exp[iB(~r?)µ(¿+)]jG+i: (59)

Direct substitution gives,

i@¿+ j ~G+i = exp[iB(~r?)µ(¿+)]ĥ0jG¡i (60)

The auxiliary bi-spinor is continuous at ¿+ = 0, as can be seen by operating
on both sides of Eq. (60) with lim²!0

R ²
¡² d¿+, obtaining

j ~G+(¿+ = 0+)i = j ~G+(¿+ = 0¡)i: (61)

The continuity of j ~G+i at ¿+ = 0 (¿¡ 6= 0), implies a discontinuity of jG+i:

jG+(¿+ = 0+)i = e¡iB(~r?;~b)jG+(¿+ = 0¡)i; (62)

Likewise, the continuity of

j ~G¡i ´ exp[iA(~r?)µ(¿¡)]jG¡i (63)

at ¿¡ = 0, (¿+ 6= 0,) implies the discontinuity of jG¡i:

jG¡(¿¡ = 0+)i = e¡iA(~r?;~b)jG¡(¿¡ = 0¡)i: (64)

This Heavyside step-function, space-dependent, phase discontinuity was
previously obtained in Ref. [11]. In earlier work [10], a gauge transformation
was used to establish the fact that the electromagnetic ¯eld of a charge which
is moving at the speed of light can be equivalently given by gauge potentials
with a ±-function singularity at the light front, or by gauge potentials with
only a step-function discontinuity there. The wave function of a particle
interacting with this ¯eld is discontinuous or continuous, depending on the
gauge choice. We choose to work with such a gauge that would give a sharp
interaction and a discontinuous spinor wave function, yet we have used here
other gauges to ¯nd the discontinuities in an explicit form.
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3.4 Momentum-transfer distribution

Due to the space dependent phase-shift of Eqs. (62) and (64), the transverse
momentum is not conserved. The Fourier components of Eq. (47) are mixed
when the singularities at the light fronts are crossed,

jg+(~q?; ¿+ = 0+)i =
Z
d~p?Q¡

~b
ZB

(~p? ¡ ~q?)jg+(~p?; ¿+ = 0¡)i; (65)

jg¡(~q?; ¿¡ = 0+)i =
Z
d~p?Q

~b
ZA

(~p? ¡ ~q?)jg¡(~p?; ¿¡ = 0¡)i; (66)

where the distribution for this momentum change, given by Q~bZ(~·), contains
all the dynamics of the ion-electron interaction,

Q
~b
Z(~·) ´ 1

(2¼)2

Z
d~r? e

i~r?¢~·
2
4 (~r? ¡~b)2

b2

3
5
¡i®Z

: (67)

Note that here ~· and ~b are two-dimensional vectors in the (x; y) plane. The

continuity is recovered in the limit Z ! 0, as Q
~b
Z(~·) ! ±(~·). Integrating

¯rst over the angular variable, we ¯nd

Q
~b
Z(~· 6= 0) =

1

2¼

exp(i~· ¢ ~b)
·2(b·)¡i2®Z

Z

»>0
d»J0(»)»1¡i2®Z; (68)

where b = j~bj, · = j~·j, and J0 is the Bessel function.

The distribution Q
~b
Z(~·) in general diverges even though the integral over

this distribution is convergent and normalized
R
d~·Q

~b
Z(~·) = 1. This is so,

because Eq. (29) describes an interaction which continually increases in
strength for large r? (or large b). In this very same regime, however, the
limit that is taken in its derivation does not apply. When the integral is
regularized so as to avoid contributions from large, transverse distances, i.e.
from » > ·°, by several di®erent regularization schemes one gets (for ~· 6= 0)

Q
~b
Z(~·)! ¡i®Z

¼

exp(i~· ¢~b)
·2

2
4¡(¡i®Z)

¡(+i®Z)

Ã
b·

2

!+i2®Z
3
5 ; (69)

where arguments presented in Ref. [13] at p. 385, p. 393, and p. 401, can
be used for an exponential, a Gaussian, and a Bessel function regularization,
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respectively. In the perturbative limit, ®Z ¿ 1, the leading order correction
to the ±-function is then given by

lim
®Z¿1

Q
~b
Z(~·) = ±(~·) ¡ i®Z

¼

1

·2
exp(i~b ¢ ~·): (70)

Note that the perturbative expression violates unitarity while the exact ex-
pression does not.

Is the regularization procedure leading to Eq. (69) correct? As we wrote
in Ref. [3], implicit in its application is an assumption that contributions
from large transverse distances and large impact parameters can be neglected.
Clearly this is not always true. Furthermore, for Eq. (69) to apply, self
consistency requires that the regulated integral of Eq. (67) must converge to

the expression of Eq. (69) for » such that j~r? ¡~bj ¿ °. The case of small
coupling, ®Z ¿ 1, was studied in Ref. [1] and does not present any special
problem. The case of large ®Z can be considered by the method of stationary
phase. Expansion of Eq. (67) around the stationary point ~r?¡~b = 2®Z~·=·2

con¯rms Eq. (69) for this case. The procedure is consistent if the stationary
point is located at small distances from the ion, i.e. if and only if

j~·j À 2®Z

°
: (71)

It is interesting to ¯nd that Eq. (71) is trivially satis¯ed in two very di®erent
limits: in the perturbative limit of ®Z ! 0 and in the high-energy limit of
° ! 1. This issue, previously discussed by us in Ref. [3] was ignored by
other works on this subject. This, we believe, has caused much confusion.
We discuss it below, in section 4.

3.5 A piecewise solution

The singular interaction on the planes perpendicular to the trajectories of
the ions, cut space-time along the light fronts into four regions. A piecewise
solution is de¯ned o® the light fronts by jg§(~q?; ¿+; ¿¡)i = jg(i)

§ (~q?; ¿+; ¿¡)i,
where (i)= I for ¿+ < 0 and ¿¡ < 0, (i)= II for ¿+ > 0 and ¿¡ < 0, (i)= III
for ¿+ < 0 and ¿¡ > 0, and (i)= IV for ¿+ > 0 and ¿¡ > 0. In each region,
the wave function is continuous and solves the local free Dirac equation. At
any time, except for t ! §1, the wave function extends in space through
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three (or two, at t = 0) of these regions. The solution presented here is not
complete in the sense that it does not include the solution on the light fronts;
¿+ = 0 and ¿¡ = 0 are excluded.

3.5.1 Initial condition and intermediate states

Consider the initial condition of a single plane wave with the quantum num-
bers j = f~j; ¸j; sjg, or, using light-front variables, j = f~j?; j+; j¡; sjg, with
the constraint j+j¡ = 1 + j2

?. The continuity o® the light fronts gives the
solution in region I,

jgI
§(~q?)i = ±(~j? ¡ ~q?)e¡i(¿¡j++¿+j¡)j¡j§i; (72)

where the bi-spinors j¡j§i are de¯ned as in Eq. (55).
The solution in regions II and III is obtained by ¯rst applying Eq. (65)

for the discontinuity across ¿+ = 0 and Eq. (66) for the discontinuity across
¿¡ = 0 and then solving the coupled equations (48, 49) inside each of the
intermediate space-time regions. We obtain in region II

jgII
+(~q?)i = exp

"
¡i¿¡j+ ¡ i¿+

Ã
1 + q2

?
j+

!#
Q¡

~b
ZB

(~j? ¡ ~q?) j¡j+i;

jgII
¡(~q?)i =

Ã
I2 + i·~! ¢ ~q?

j+

!
jgII

+(~q?)i; (73)

and in region III,

jgIII
¡ (~p?)i = exp

"
¡i¿+j¡ ¡ i¿¡

Ã
1 + p2

?
j¡

!#
Q
~b
ZA

(~j? ¡ ~p?) j¡j¡i;

jgIII
+ (~p?)i =

Ã
I2¡ i·~! ¢ ~p?

j¡

!
jgIII
¡ (~p?)i: (74)

It is now apparent why the Fourier transform with respect to ~r? and the
de¯nition of jg§(~q?; ¿+; ¿¡)i in Eq. (47) were needed. The simple disconti-
nuity condition (62) at ¿+ = 0 applies only to jG+i. The other bi-spinor
jG¡i is in°uenced indirectly by the ¯eld at ¿+ = 0 through its coupling to
jG+i. Likewise, at ¿¡ = 0 the simple discontinuity condition (64) for jG¡i
induces a non-trivial change in jG+i. The coupling between jG+i and jG¡i
in free space on either sides of the singular interaction is best described by
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Eqs. (48,49) for their Fourier components with respect to ~r?. Thus, while
the discontinuity conditions (65,66) for jg§i seem more complicated than
the discontinuity conditions (62,64) for jG§i, using jg§i allows for a simple
derivation of the complete spinor wave function in regions II and III.

The solution of the free Dirac equation in region IV is complicated by the
non-trivial boundary conditions on the light fronts. Applying Eq. (65) again
for the discontinuity across ¿+ and Eq. (66) for the discontinuity across ¿¡,
we cross from regions II and III into region IV to obtain on the hyper-surfaces
adjacent to the light fronts,

jgIV
¡ (~k?; ¿¡ = 0+)i =

Z
d~q? exp

"
¡i¿+

Ã
1 + q2

?
j+

!#
Q
~b
ZA

(~q? ¡ ~k?)

£ Q¡
~b

ZB
(~j? ¡ ~q?)

Ã
I2 + i·~! ¢ ~q?

j+

!
j¡j+i; (75)

jgIV
+ (~k?; ¿+ = 0+)i =

Z
d~p? exp

"
¡i¿¡

Ã
1 + p2

?
j¡

!#
Q¡

~b
ZB(~p? ¡ ~k?)

£ Q
~b
ZA

(~j? ¡ ~p?)

Ã
I2 ¡ i·~! ¢ ~p?

j¡

!
j¡j¡i: (76)

Instead of solving now for jgIV
§ i at any ¿§ > 0, the transition amplitudes

are obtained in the next section by de¯ning the transition current and by
applying Gauss' theorem for this current.

3.5.2 Transition current and Gauss' theorem

The transition amplitudes A
(j)
k were de¯ned in Eq. (24),

A(j)
k ´ lim

tf!1

Z
d~r Á(k)y(~r; tf) ª(j)(~r; tf); (77)

where

ª(j)(~r; tf) = Û (S)(tf ; ti)jÁ(j)(ti)i : (78)

The integrand is a component of a 4-vector transition current density:

J(k;j)
0 ´ Á(k)y ª(j)

~J(k;j) ´ Á(k)y ·~® ª(j): (79)
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An equivalent form for the transition current in terms of light-fronts repre-
sentation wave-functions includes

J
(k;j)
§ ´ J

(k;j)
0 § J(k;j)

z = 2 F ky§ G
(j)
§ : (80)

We prove ¯rst that the transition 4-current density de¯ned in Eq. (79) is
conserved. In fact, any two solutions of the free Dirac equation can be used
to de¯ne a conserved current in a similar way. This proof is very similar to
the one found in textbooks proving the probability current to be conserved
[6]. Both Á(k) and ª(j) solve in region IV the free Dirac equation in the Dirac
representation

i
@

@t
ª(j)(~r; t) =

h
¡i·® ¢ ~r + ·°0

i
ª(j)(~r; t) ; (81)

i
@

@t
Á(k)(~r; t) =

h
¡i·® ¢ ~r+ ·°0

i
Á(k)(~r; t) : (82)

Multiplying Eq. (81) from the left by the adjoint of Á(k), multiplying the
Hermitian conjugate of Eq. (82) from the right by ª(j) and subtracting gives

@

@t

³
Á(k)yª(j)

´
= ¡~r ¢

³
Á(k)y ·®ª(j)

´
; (83)

where the Hermiticity of the Dirac matrices has been used. Using the de¯ni-
tion of the transition current in Eq. (79), Eq. (83) is reveled as the continuity
equation

@

@t
J(j;k)

0 + ~r ¢ ~J(j;k) =
@J¹

@x¹
= 0 ; (84)

proving the transition-current density to be conserved.
Integrating over any empty space-time hyper-volume, V , and applying

Guass' theorem to convert the volume integral into a surface integral over
the hyper-surface S enclosing V , in general gives,

Z

S
d¾J ¹n¹ = 0 ; (85)

where the unit 4-vector n¹ is de¯ned as the outward pointing normal to S.
For our purposes, it is useful to apply Eq. (85) to the space-time region IV,
de¯ned by ¿§ > 0. The closed hyper-surface S enclosing region IV is made
of the following open hyper-surfaces: (i) t = tf ! +1, (ii) ¿+ = 0+, ¿¡ > 0,

17



(iii) ¿¡ = 0+, ¿+ > 0, (iv) x !§1, and (v) y !§1. Writing Eq. (85) for
this surface gives

0 = lim
tf!1

Z
dr?

Z ¡1

+1
J0(~r; tf)

¡2
Z
dr?

Z 0+

+1
d¿¡J+(~r?; ¿+ = 0+; ¿¡)

¡2
Z
dr?

Z +1

0+
d¿+J¡(~r?; ¿+; ¿¡ = 0+); (86)

where use was made of the fact that in any physical situation, i.e. for a
square-integrable wavepacket, the currents vanish as ~r? ! 1. The hyper-
surfaces (iv) and (v) do not contribute to the integral. The factors of 2 arise
from the Jacobian relating the original di®erentials to the di®erentials for
the light-front variables, and the negative sign in the second and third terms
arise because the unit normal vectors n̂§ are directed outside the volume V ,

i.e. J ¢ n̂§ = ¡J§. The transition currents J
(k;j)
§ are

J(k;j)
§ (~r?; ¿+; ¿¡) = 2

Z
d~p?

Z
d~l? exp[i~r? ¢ (~l? ¡ ~p?)]

£hfk§(~p?; ¿+; ¿¡)jgIV
§ (~l?; ¿+; ¿¡)i: (87)

Integrating over ~r? and using the explicit expression for the plane waves,

A(j)
k = 16¼2

Z 1

0+
d¿¡ei¿¡k+h¡k+jgIV

+ (~k?; ¿+ = 0+; ¿¡)i

¡16¼2
Z 1

0+
d¿+e

i¿+k¡h¡k¡jgIV
¡ (~k?; ¿+; ¿¡ = 0+)i: (88)

The amplitudes are ¯nally obtained by substituting Eqs. (75,76) and in-
tegrating over ¿§. The integration over ¿§ would have given a ±-function
conservation law for the light-front momenta, had it been on the complete
line ¡1 < ¿§ <1. Instead, the integrals on the half lines 0 < ¿§ <1 are
regulated in the usual way with an in¯nitesimal small constant, ´ [14].

Z 1

0+
d¿ exp(i¿·) =

i

·+ i´
: (89)
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3.6 Transition amplitudes

The transition amplitudes corresponding to the exact solution of the sharp
Dirac equation o® the light fronts are

A(j)
k =

i

¼

Z
d~p?

8
<
:
¾jk(~p?) Q

~b
ZB (~k? ¡ ~p?) Q

~b
ZA(~j? ¡ ~p?)

p2
? + 1 ¡ j¡k+

¡¾
ky
j (~p?) Q

~b
ZA(~p? ¡ ~k?) Q

~b
ZB(~p? ¡ ~j?)

p2
? + 1¡ j+k¡

9
=
; ; (90)

which is the main result of our work. The spinor part is

¾jk(~p?) ´ (2¼)3hukj (I4 ¡ ·®z) (·® ¢ ~p? + ·°0) (I4 + ·®z) juji
´ (2¼)3h¡k+jI2 ¡ i·~! ¢ ~p?j¡j¡i; (91)

and Q
~b
Z(~·), de¯ned in Eq. (67), is the Fourier transform of the phase shift at

the light front.

4 Application to pair-production

Electron-positron pair production in extremely relativistic heavy-ion colli-
sions has lately received a lot of attention. Recent and ongoing experiments
at CERN's SPS [15, 16, 17], as well as upcoming experiments at RHIC and
LHC, combine with the fundamental aspects of this process to make its in-
vestigation an important ¯eld of research.

The transition amplitudes, A
(j)
k , is the amplitude for electron scattering

from the initial state at ti ! ¡1,

e¡iÂ(z;ti)Á(j)(ti)i (92)

to the ¯nal state at tf !1,

e¡iÂ(z;tf)Á(k)(tf) : (93)

Note that these asymptotic forms at ti !¡1 and tf !1 are correct only

in the limit ¯ ! 1. When ¸k = 0 and ¸j = 1, A(j)
k is an amplitude for

a transition from the negative continuum to the positive continuum, i.e. an
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amplitude for pair production. The probability for pair production o® the
light fronts will then be given by an integral over the transition amplitudes
squared, jA(j)

k j2. This integral, however, does not give the total cross section
for pair production. Pairs for which either the electron or the positron are
moving at the velocity of an ion, are not accounted for. It is possible that
these "left out" pairs dominate the total cross section for pair production.
In fact, this integral can only give a prediction for an observable within
a wave-packet formulation of of both initial and ¯nal states. This is also
consistent with the physical nature of a scattered particle. One can avoid
the light fronts, experimentally by placing the detector away from the ions'
trajectories, and theoretically by forming a wave packet from the distorted
plane waves of Eq. (92).

4.1 The perturbative limit

The small-charge perturbative-limit of the pair-production amplitude was
calculated in Ref. [18]. To leading order in ®Z (second order), the amplitude
is given by a sum over two diagrams, where each diagram describes a two-
photon exchange process. Despite the completely di®erent derivation, here
and in Ref. [18], the perturbative limit of our amplitude obtained by substi-
tuting Eq. (70) in Eq. (90) exactly reproduces the ultrarelativistic limit, of
¯ ! 1 and large °, of the perturbative result of Ref. [18]. Both give

Z
d~p?e

¡i~b¢(2~p?¡~j?¡~k?) i8 (®ZA)(®ZB)

(~p? ¡ ~k?)2 (~p? ¡~j?)2

h¡k+jI2 ¡ i·~! ¢ ~p?j¡j¡i
j¡k+ ¡ (1 + p2

?)

¡
Z
d~q?e

i~b¢(2~q?¡~j?¡~k?) i8 (®ZA)(®ZB)

(~q? ¡ ~k?)2 (~q? ¡ ~j?)2

h¡k¡jI2 + i·~! ¢ ~q?j¡j+i
j+k¡ ¡ (1 + q2

?)
:(94)

4.2 Nonperturbative e®ects

The nonperturbative e®ects are probably the most interesting subject of this
research. It is important to give predictions as to both the magnitude and
nature of nonperturbative e®ects in pair production.

Substituting the transverse-momentum transfer distribution induced by

a single ion, Q
~b
Z (~·), as it is, with no regularization applied, into Eq. (90) the

amplitude is given by three nested two-dimensional integrations, two of which
diverge. As discussed in Ref. [3] and in section 3.4 above, this divergence is a
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result of applying the approximation r?; b ¿ ° outside its range of validity.
A regularization may be applied to overcome this divergence. It would be
best to apply a physically motivated regularization and actually calculate the
complete integral. We have not attempted to do that. Instead, motivated
by recent experiments in CERN, we have limited our calculation to observed
yields of electron positron pairs within a certain range of transverse momenta
for which, we have shown, contributions from large transverse distances and
large impact parameters can be safely neglected.

We had ¯rst integrated over ~p? to obtain simple combinations of the
Bessel functions of the third kind, K0 and K1. Note that the convergence
of the ~p? integration to the Bessel functions occurs only for pair-production
amplitudes for which 1 ¡ j§k¨ > 0, and is directly related to the mass
gap between the two continua and should be reconsidered for transitions
within the same continuum. We have then used the condition that one of
the two transverse momenta, ~j? or ~k?, is much larger than 2®Z=° to apply
a stationary phase calculation to one of the coordinate integrations. The
last integral, over the other coordinate-integration variable, converges due
to the Bessel functions which drop exponentially for large values of their
arguments. Having thus proved that contributions for the 6-fold integral of
Eq. (90) from large, transversal coordinates can be neglected, we have made
the substitution of Eq. (69) and obtained

A(j)
k ¡!

2
4
Ã
b

2

!+i2®(ZA+ZB)
¡(¡i®ZA)

¡(+i®ZA)

¡(¡i®ZB)

¡(+i®ZB)

3
5

£ i

¼3
®2ZAZB

Z
d~p?(~p? ¡ ~k?)¡2 (~p? ¡~j?)¡2

£
(

¾jk(~p?)

p2
? + 1¡ j¡k+

ei
~b¢(~j?+~k?¡2~p?)

h
j~p? ¡ ~k?ji2®ZAj~p?¡ ~j?ji2®ZB

i

¡ ¾kyj (~p?)

p2
? + 1 ¡ j+k¡

e¡i
~b¢(~j?+~k?¡2~p?)

h
j~p? ¡ ~k?ji2®ZB j~p? ¡ ~j?ji2®ZA

i
9
=
;(95)

We emphasize, that naively substituting the regularized result of Eq. (69)
in Eq. (90) is generally incorrect and so is therefore Eq. (95). In particular,
it induces mistakes when Eq. (71) does not apply. Note, for example, that

the branch-point singularities for the intermediate momentum ~p? = ~k? or ~j?
are an artifact of using Eq. (69) for ~· = 0, Eq. (90) has no such singularities,
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and an additional regularization at these points is then needed.
This substitution, however, is correct and useful when applied with care

and within the appropriate restricted experimental conditions. In Ref. [3] we
apply it to recent experiments in CERN SPS, where, to the best of our knowl-
edge, these conditions do indeed apply. Based on this substitution, we were
able to explain previously unexplained experimental results. We have shown
that the nonperturbative solution and second-order perturbation theory give
exactly the same results, in the high-energy limit, for production yields, in-
tegrated over the impact parameter, of electron-positron pairs that are not
co-moving with the ions, as long as the transverse-momenta transferred in
the collision from the ions to the electron are much larger than 2®Z=° or
as long as one only counts what Baltz and MacLerran had called \centrally
produced pairs". The Z2

BZ
2
A charge dependence of the single-positron yields,

even for very large charges, observed in these experiments is consistent with
the charge dependence we have thus obtained for the nonperturbative, high-
energy limit. It agrees with perturbation theory, but is not a perturbative
e®ect.

The basis of this picture is the division of space-time to free regions and
phases between them where the interaction acts. This also tells us where one
should look, in momentum space, and in space-time, if one wants to study
and observe non-perturbative e®ects, either:

² on the light fronts,

² at other observables than total yields,

² at transverse distances larger or momenta smaller than required by the
sharp limit of Eq. (71).

An interesting example for such an observable may be multiple pair pro-
duction. The two-photon exchange diagrams of second order perturbation
theory were replaced in our amplitude by a two \kicks" mechanism in which a
photon exchange is replaced by a space dependent phase shift. Higher orders
in the coupling constant appear in these phase shifts instead of in higher or-
der diagrams. New predictions for multiple-pair production because of these
nonperturbative phases were considered in Ref. [19].
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4.3 Controversy

In Refs. [20, 21], Ivanov, Schiller, and Serbo, calculated corrections to the
Born cross section for the inclusive process

Z1Z2 ¡! Z1Z2e
+e¡ ; (96)

and obtained large negative corrections for the total pair-production cross
sections. The authors also referred to our work which they interpreted as
leading to the conclusion that no such corrections exist and thus claimed
a disagreement with our work. Several suggestions were made as to the
resolution of this controversy.

We have claimed that no real disagreement was shown [22]. Ref. [20]
calculates the total cross section. We considered only electron-positron pairs
produced so that neither the electron nor the positron is asymptotically co-
moving with an ion, and we have neglected contributions from small mo-
mentum transfer. We have not calculated the complete cross section for
electron-positron pair production in heavy-ion collisions, and we have cer-
tainly not claimed that the complete cross section is given by second order
perturbation theory. On the contrary, we have emphasized that our ampli-
tude is restricted to part of the total phase-space. To be more speci¯c, we
have written the transition amplitude of Eqs. (90) and (67) in Refs. [1, 2] yet
we have not integrated over it to obtain a total cross section.

Our approach distinguished between electron-positron pairs produced so
that they are co-moving with the ions and those that are not. This is because
these two cases correspond to two essentially di®erent asymptotic bound-
ary conditions for the electron-positron pair. We have also noted that it is
straight-forward to distinguish between these cases experimentally. In Ref.
[3] we have integrated over the amplitude only under the restrictions dis-
cussed above and in the context of speci¯c experimental conditions.

As for the total cross section, we did not calculate it within our approach
nor were we able to show that the discrepancy between the total cross section
of Refs. [20, 21], and the integral over our amplitude can indeed be attributed
to that parts of the total cross section that our amplitude does not account
for. It seems that this was recently shown by Lee and Milstein in Ref. [23].
They use our amplitude but improve it by correcting for the neglected con-
tributions from small momentum transfer. They show that neglecting this
regime can be misleading and prove a remarkable result, namely, that this
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very same contribution to the cross section which we have not calculated
compensates exactly for the di®erence between our result and the total cross
section obtained by Ivanov, Schiller, and Serbo in Ref. [20].

In Ref. [24] a di®erent resolution of the so-called puzzle was suggested,
namely that the amplitude for pair production and the amplitude for electron
scattering are no longer related by a simple crossing symmetry in the high
energy limit. Hence, according to Ref. [24] it is incorrect to use our amplitude,
formally derived for electron scattering, to the direct calculation of pair-
production cross sections. They suggest an indirect calculation based on this
amplitude and unitarity.

5 Conclusion

We have shown that the two-center time-dependent Dirac equation for an
electron in the classical external ¯eld of two colliding ions reduces in the
limit in which the ions are moving at the speed of light to an equation,
which can be solved o® the light fronts exactly and in closed form. This
special equation and its solution were further considered by several groups.
Independent research has been published which is by-and-large in agreement
with our work [4, 5]. Using di®erent methods di®erent research groups have
all arrived at the same results. On the other hand, the application of this
solution to pair-production has caused some confusion and controversy that
is still in debate. What makes the debate so di±cult yet so fascinating,
is that each group, coming from di®erent ¯elds of physics, and building on
di®erent traditions and concepts, uses a di®erent framework and a di®erent
language. Nevertheless, we believe that the di®erent approaches are likely to
converge to a single result as is already being hinted in Ref. [23].
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