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Confined quantum many-body systems of a given particle number exhibit a variety
of intrinsic shape characteristics as a function of increasing external field and in-
ternal thermal excitation. The shell model is an important tool for the theoretical
description of these various structures and transitions in nuclei. Another system
in which correlations beyond the mean field may play an important role is semi-
conductor quantum dots. In this Proceedings, I will compare nuclei and quantum
dots and their various deformation properties. I will report on shell-model calcu-
lations in nuclei and some recent mean-field calculations of the thermal properties
of quantum dots.

1 Phases in nuclei

Nuclei often exhibit different intrinsic structures within the same system. Ex-
perimental and theoretical comparisons for 6Ni confirmed the existence of a
spherical ground-state band and a prolate deformed band beginning with a
measured 27 state at 5.3 MeV excitation energy' (the second 0% state was
experimentally inaccessible). This structure, which is present in shell-model
calculations, was shown to have an intrinsic deformation by investigating the
energy surface generated from cranked Hartree-Fock calculations®. This is
just one example demonstrating how nuclear spectra often exhibit a band
structure that is related to the intrinsic deformation in the system.

Some nuclei show interesting structure in their ground states. For exam-
ple, nuclei in the '?*Xe region are known to be 7-soft. Detailed shell-model
Monte Carlo (SMMC) calculations in this region confirmed that effective two-
body interactions will give rise to such structures®. As one increases the tem-
perature in these systems, they tend toward sphericity. This effect has also
been seen in rare-earth calculations *®. Many rare-earth systems are known
to have well-deformed ground states. SMMC calculations of intrinsic shapes
in these nuclei confirm this in the shell-model context by using a Kumar-
Baranger effective interaction®.

Another interesting phenomenon occurs when one approaches shell clo-
sures in neutron-rich nuclei. For example, many calculations suggest that in
32Mg the 07/, sub-shell begins to fill before the sd-shell is completely full.
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The large B(E2) value of *>Mg ¢ cannot be explained unless one allows neu-
trons to occupy fp-shell orbitals. Recent SMMC results”-® confirm the picture
that an island of inversion exists in the 32Mg region®. These calculations were
performed using the SMMC technique in the full 1s-0d-0f-1p model space.
The effective shell-model interaction was derived from the realistic charge-
dependent Bonn potential ', with modifications to the monopole terms '!
to alleviate difficulties in the saturation properties of the interaction. Since
this calculation was performed in two major oscillator shells, extrapolation
procedures to eliminate center-of-mass contamination of the energies were
implemented for the SMMC technique. With the center-of-mass elimination
and a realistic effective interaction, we were able to reproduce both ground-
state masses and B(E2) values across the sd- fp region, both for stable and
unstable nuclei. Details are given in”.

2 Phases in quantum dots

I now turn to another confined quantum mechanical system that exhibits
interesting many-body features. Semi-conductor quantum dots are typically
formed in ITI-V substrates, such as GaAs. They may be laterally constructed
so that their spatial dimension in the vertical dimension (z direction) is small
compared to the horizontal (z, y) dimensions. The GaAs may be constructed
in such a way that a physical confining barrier is also included, thus giving
rise to confinement in all three dimensions. Electrons may then be placed into
this confined structure by conductance spectroscopy, and the system may be
studied. In the following, I will briefly describe some interesting thermal
effects within these systems.

2.1 Quantum dots in magnetic fields: thermal response of broken
symmetry phases

In studies of many-body phenomena in quantum dots, experimental efforts
have focused on mapping the magnetic field dependence of their ground-state
structure by measuring the chemical potential via capacitance spectroscopy!2.
Cusps and steps in the chemical potential were found to clearly separate
different ranges of magnetic fields'?'3. These features were identified with
phase transitions in the charge density of the quantum dot. At magnetic field
strengths on the order of a few tesla, all electrons become spin-polarized initi-
ating the maximum density droplet (MDD) phase 2, in which the density is
constant and homogeneous at the maximum value that can be reached in the
lowest Landau level. The stability of the MDD is determined by a competi-
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tion among the kinetic energy, external confinement, the Coulomb repulsion
between electrons, and the attraction created by the Coulomb exchange term.
For increasing magnetic field, the charge-density distribution of the droplet
reconstructs'® with a ring of electrons breaking off from the MDD phase. This
edge reconstruction has been shown via mean-field'® and density functional
theory'® calculations to result from a rotational symmetry-breaking phase
transition from the MDD to a Wigner molecule or Wigner crystal phase.
These calculations are in good qualitative agreement with recent experimen-
tal results where instabilities of the MDD state and other transitions in the
high magnetic field region were accompanied by a redistribution of the charge
density!3.

In describing the ground-state and low-lying (intra-band) excitations
of the N-electron semiconductor nanostructures, it is often sufficient to
restrict consideration to the conduction band using the effective-mass
approximation'”. We consider the problem of N electrons of effective mass
m* in a plane, (z,y), confined by an external parabolic potential, V(r) =
1m*wgr?, and subject to a strong magnetic field B = Byé,. We consider the
Zeeman splitting but neglect the spin-orbit interaction. The Hamiltonian for
such a system is

N2
og— €A *
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where the vector potential is /T(F,) = (Bo/2)(—yi,xi,0), g* = 0.54, ¢ = 12.9,
m* = 0.067m,, and hwg = 3 meV.

We solve this equation at the finite-temperature Hartree-Fock level 18. We
use a Fock—-Darwin basis expansion to solve the finite-temperature Hartree-
Fock equations. Since we use a high (= 12 T) magnetic field, we consider only
angular momentum states with the n = 0 principal quantum number. The
electrons carry spin, and so our states are labeled by k = {li, s}, where [},
is the angular momentum projection of the k-th state and sj is the spin of
that state. We found convergence using fifty states for the N < 8 systems.
We also checked our zero-temperature results with other publications ! for
various numbers of electrons in the dot and found satisfactory agreement.

We begin the discussion of our results by investigating the electron charge,
angular momentum, and spin densities as a function of increasing temperature
for the N = 6 system at By = 12.15 T. We show densities at representative
temperatures of 3.87 K (the low temperature limit, v = 6), 11.97 K (before
the first phase transition, v = 6), 13.65 K (in the second phase, v = 5), and
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Figure 1. The charge density as a function of temperature. In each panel, —8 nm< z,y <
8 nm and the temperature increases from left to right as discussed in the text.

14.32 K (in the third phase, v = 4), where v is the number of definable high-
density regions (or vortices) in the charge density plots. The density, shown
in Fig. 1a-d, begins as a fairly well-defined Wigner crystal at 3.87 K, which
exhibits some degree of thermal broadening at 11.97 K. The v =5 and v =4
phases continue to show a similar amount of density in the remaining vortices,
while the density of the thermally dissipated vortices have effectively spread
through the entire dot.

The suddenness of the phase transitions seen in Fig. 1 become quite evi-
dent when the internal energy of the quantum dot is plotted as a function of
the temperature. We show the three phases of the dot in Fig. 2a. Note that
the v = 6 phase exists as an excited configuration when the most probable
Hartree—Fock solution is the v = 5 phase. Similarly, the v = 4 configura-
tion exists as a possible excited configuration of the system even at fairly
low temperatures. The specific heat, C, = d{H)/dT thus shows a sharp
peak structure indicating phase transitions at that the system undergoes a
phase transition. This occurs since the energy is piece-wise continuous along
the three phases, although some slight smoothing does occur if one includes
higher-order correlations. These calculations suggest that the quantum dot
exhibits a band structure of many-body levels. The low-temperature states
all have the same intrinsic shape characteristic (the same vortex structure).
As we increase the temperature, other v phases become accessible. At the
point when two bands of different intrinsic character cross in energy, we find
a phase transition. Similar phenomena are found in nuclear physics, where at
higher nuclear excitation energies the eigenstates of the system may be of a
different intrinsic deformation when compared to states of the ground-state
band 1°.
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Figure 2. Expectation value of the energy as a function of temperature showing the three
phases as discussed in the text.

Signatures of the density transitions that we have seen also appear in
the Hartree-Fock occupations ngr. At low temperatures (3.9 K) the familiar
step-function occupation behavior is evident in which the occupied Hartree-
Fock states have nyp ~ 1, and all other states show negligible occupation. At
12 K in the v = 6 phase, we find a decrease of occupation to roughly 0.8 in the
lowest six Hartree-Fock levels and a spreading to higher energy states. As the
system undergoes the transition to v = 5, we see only five Hartree—Fock levels
significantly filled (with ngpr > 0.7), and finally in the » = 4 phase, only four
Hartree-Fock levels are significantly filled. The occupation number-spreading,
which is due to thermal excitation of the system, is enhanced significantly
when the system undergoes a phase transition.

The phase transitions that we have shown in the preceding discussion have
definite observable consequences. In Fig. 3a we plot the chemical potential,
that is, the separation energy A(N,T) = En(T) — Ex_1(T) to remove a
particle from the quantum dot at a given temperature. Since this is an energy
difference, A(N,T) will be influenced by transitions within both the N = 6
and N = 5 systems, and we expect changes in slope at the transition points.
The v = 5 to v = 4 transition in the N = 5 dot occurs at roughly 12 K,
causing a sharp rise in A(N = 6). A slope change in A(N = 6) is seen at
~ 13 K, where the v = 6 to v = 5 transition occurs in the NV = 6 system. The
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decrease from 14 —14.3 K occurs when the NV = 6 system makes the transition
from v = 5 to v = 4. A final change in slope occurs when the N = 5 dot
makes the transition from v = 4 to v = 3. For the brief temperature interval
when the N = 6 and N = 5 dots are in the same v phase, we see a decrease
in the chemical potential.

We observe similar changes in the inverse compressibility, As(N,T) =
En1(T)—2EN(T)+EN_1(T). This quantity has been measured for quantum
dots in low magnetic fields 2° and studied in Hartree-Fock theory for ground-
state properties 2!. In our case, the N = 7,6, and 5 dots participate in the
observable. We again notice strong effects as one passes through transition
points in either of the three systems contributing to the observable. Figure 3b
shows Ao (N = 6) as a function of temperature. Before transitions occur, A,
remains fairly constant. A large decrease begins at 12 K, where the N = 5
system undergoes its first transition. Interestingly, A, increases significantly
when the N =6 and N = 5 dots are in the v = 4 phase.

In order to investigate the sensitivity of our results to the approximations
made (namely the Hartree-Fock approximation), we extended our studies to
include the second-order perturbative correction to the Hartree-Fock energy.
This correction to the energy is given by

1 | (ab ]| rs) |*
=Y Y @
4 ab<ep T8>€F €a T € —&r—&s

where we restrict the sums to be below and above the Fermi energy surface,
er. In this expression, the Hartree-Fock states are given by a,b,r,s, with
associated single-particle energies €,,¢€p,&r,€5, and {ab | ¥ | rs) are the anti-
symmetrized two-body Hartree-Fock matrix elements of the original two-body
interaction of the Hamiltonian. We note that the absolute value of AFE5 in
our calculations is always less than 1% of the total energy, and in fact only
slightly changes the observable quantities, as is evident from Fig. 3, where the
second-order perturbative results are also shown for A and A,.

3 Conclusion

Confined quantum-mechanical systems exhibit a variety of interesting phe-
nomena. Nuclear shapes range from spherical (near closed shells) to well de-
formed (in mid-shell systems), to those shapes with special symmetries such
as the y-soft nuclei in the 1?4Xe region. Quantum dots also show interesting
shape changes as one adds electrons at a given magnetic-field strength and
temperature. The shells that are built up in quantum dots at high magnetic
fields are somewhat different in character from those found in nuclei. For
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Figure 3. a) Chemical potential, A and b) inverse compressibility, Ay for the N = 6 system
as a function of the temperature. Hartree-Fock results are shown as a solid line, and the
second-order perturbation theory results are given by the dashed line.

example, in the oscillator basis the doubly magic nucleus, “°Ca, can be con-
sidered as a core, and hence inert, system in calculations of low-lying states
in the mid-fp shell. In contrast to this behavior, the oscillator levels are all
active at high magnetic fields. From density plots and second-order ground-
state energy differences, one clearly sees that the shell structure in quantum
dots is actually classical?2.

Nuclei exhibit shape and phase transitions as a function of cranking fre-
quency. The signature for such a change is a level crossing in J, as a function
of the cranking frequency. Furthermore, the same nucleus can have different
bands built upon different intrinsic structures within the same nucleus. This
is also true in quantum dots. I indicated how a dot goes through phase tran-
sitions as a function of temperature and how different intrinsic structures are
evident during the transitions. The thermal phase transitions should be ex-
perimentally verifiable by investigating fluctuations of the chemical potential
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as a function of temperature.
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