vinimum opanning itrees ior Gene vlusitering 1

Minimum Spanning Trees for
Gene Expression Data Clustering*

Ying Xu! Victor Olman! Dong Xu!

xynQ@ornl.gov vo4Qornl.gov xud@ornl.gov

1 Computational Protein Structure Group, Life Sciences Division, Oak Ridge National

Laboratory, 1060 Commerce Park Drive, Oak Ridge, TN 27831-6480, USA.

Abstract

This paper describes a new framework for microarray gene-expression data clustering. The
foundation of this framework is a minimum spanning tree (MST) representation of a set of multi-
dimensional gene expression data. A key property of this representation is that each cluster of
the expression data corresponds to one subtree of the MST, which rigorously converts a multi-
dimensional clustering problem to a tree partitioning problem. We have demonstrated that though
the inter-data relationship is greatly simplified in the MST representation, no essential information
is lost for the purpose of clustering. Two key advantages in representing a set of multi-dimensional
data as an MST are: (1) the simple structure of a tree facilitates efficient implementations of rigorous
clustering algorithms, which otherwise are highly computationally challenging; and (2) as an MST-
based clustering does not depend on detailed geometric shape of a cluster, it can overcome many of
the problems faced by classical clustering algorithms. Based on the MST representation, we have
developed a number of rigorous and efficient clustering algorithms, including two with guaranteed
global optimality. We have implemented these algorithms as a computer software EXCAVATOR.
To demonstrate its effectiveness, we have tested it on two data sets, i.e., expression data from yeast
Saccharomyces cerevisiae, and Arabidopsis expression data in response to chitin elicitation.

Keywords: microarray gene expression data, clustering, minimum spanning trees

1 Introduction

As probably the most explosively expanding tool for genome analysis, microchips of gene expression
have made it possible to simultaneously monitor the expression levels of tens of thousands of genes
under different experimental conditions. This provides a powerful tool for studying how genes col-
lectively react to changes in their environments, providing hints about the structures of the involved
gene networks. One of the basic problems in interpreting the observed expression data is to cluster
genes with correlated expression patterns over some time series and/or under different conditions.

A number of computer algorithms/software have been developed for clustering gene expression
patterns. The most prevalent approaches include (i) hierarchical clustering [1, 2], (ii) K-means clus-
tering [3], and (iii) clustering through self-organizing maps (SOMs) [4]. While all these approaches
have clearly demonstrated their usefulness in applications [5], some basic problems remain — (1) none
of these algorithms can, in general, rigorously guarantee to produce a globally optimal clustering for
any non-trivial objective function; (2) both K-means and SOM heavily depend on the “regularity” of
the geometric shape of cluster boundaries; they generally do not work well when the clusters cannot
be contained in some non-overlapping convex sets — just to name a few.

We have developed a framework for representing a set of multi-dimensional data as a minimum
spanning tree (MST), a concept from the graph theory. A tree is a simple structure for representing

*Correspondence author: Ying Xu. This work is supported by the Office of Biological and Environmental Research,
U.S. Department of Energy, under Contract DE-AC05-000R22725, managed by UT-Battelle, LLC.

4 Al €t al.

binary relationships, and any connected component of a tree is called a subtree. Through this MST
representation, we can convert a multi-dimensional clustering problem to a tree partitioning problem,
i.e., finding a particular set of tree edges (“long” edges from either local or global point of view) and
then cutting them. Representing a set of multi-dimensional data points as a simple tree structure will
clearly lose some of the inter-data relationship. However we have rigorously demonstrated that no
essential information is lost for the purpose of clustering. This is achieved through a rigorous proof
that each cluster corresponds to one subtree, which does not overlap the representing subtree of any
other cluster. Hence a clustering problem is equivalent to a problem of identifying these subtrees
through solving a tree partitioning problem. Because of the simplicity of a tree structure, many tree-
based optimization problems can be solved efficiently in a similar but generalized fashion to that of
their corresponding 1D problems. We will describe, in the following sections, a number of efficient
and rigorous tree-based clustering algorithms, some of which have guaranteed global optimality.

In addition to being able to facilitate efficient clustering algorithms, an MST representation also
allows us to deal with clustering problems that classical clustering algorithms have problems with.
As these algorithms rely on either the idea of grouping data around some “centers” or the idea of
separating data points using some regular geometric curve like a hyperplane, they generally do not
work well when the boundaries of the clusters are very complex. An MST, on the other hand, is
quite invariant to detailed geometric changes in the boundaries of clusters. For example, the MST
representation will be quite stable under a large class of geometric transformations to the shapes
of the cluster boundaries (detailed discussion will be provided elsewhere). This implies that the
shape complexity of a cluster has very little effect on the performance of our MST-based clustering
algorithms.

MSTs have been used for data classification in the field of pattern recognition [6] and image
processing [7, 8, 9]. We have also seen some limited applications in biological data analysis [10].
One popular form of these MST applications is called the single-linkage cluster analysis [11, 12].
Our study on these methods has led us to believe that all these applications have used the MSTs
in some heuristic ways, e.g., cutting long edges to separate clusters, without fully exploring their
power and understanding their rich properties related to clustering. In this paper, we will provide
in-depth studies for MST-based clustering. Our major contributions include a rigorous formulation
for general clustering problems, the discovery of new relationship between MSTs and clustering, and
novel algorithms for MST-based clustering.

We have implemented the MST-based clustering algorithms, along with the MST representation,
as a computer program EXCAVATOR (EXpression data Clustering Analysis and VisualizATiOn Re-
source). We have tested the program on a number of data sets.

2 Spanning Tree Representation of a Data Set

We will use a minimum spanning tree to represent a set of expression data and their significant inter-
data relationships to facilitate fast rigorous clustering algorithms. Let D = {d;} be a set of expression
data with each d; = (e},, e!) representing the expression levels at time 1 through time ¢ of gene i.
We define a weighted (undirected) graph G(D) = (V, E) as follows. The vertex set V = {d;|d; € D}
and the edge set F = {(d;,d;)| for d;,d; € D and i # j}. Hence G(D) is a complete graph. Each
edge (u,v) € E has a weight that represents the distance (or dissimilarity), p(u,v), between u and v,
which could be defined as the Euclidean distance, the correlational coefficient, or some other distance
measures.

A spanning tree T of a (connected) weighted graph G(D) is a connected subgraph of G(D) such
that (i) T contains every vertex of G(D), and (ii) T does not contain any cycle. A minimum spanning
tree is a spanning tree with the minimum total distance. A minimum spanning tree of a weighted
graph can be found by a greedy method, as illustrated by the following strategy used in the classical
Kruskal’s algorithm (see page 222 in [12]). A simple implementation of the Kruskal’s algorithm [13]

mMinimuim opanning Lrees 1or ene vlustering 9

Figure 1: An MST representation of a set of data points. (a) A set of 2D points. (b) An MST
connecting all the data points, using the Euclidean distance. These data points form four natural
clusters, based on their relative distances.

runs in O(||E||log(]|E||)) time, where || - || represents the number of elements in a set. Figure 1 shows
an example of a minimum spanning tree of a 2D data set, consisting of four “natural” clusters.

By examining examples like Figure 1, we have observed that data points of the same cluster
are connected with each other by short tree edges (without data points from other clusters in the
middle) while long tree edges link clusters together. We found this is generally the case with an MST
representation of any multi-cluster data set. To rigorously prove this, we need a formal definition of
a cluster. So what constitutes a cluster in a data set? Here we provide a necessary condition for a
subset of a set to be a cluster. Let D be a data set and p represent the distance between two data
points of D.

C C D forms a cluster in D only if for any arbitrary partition C = Cy U Cs, the closest
data point d to Cy, d € D — C, is from Cs. Formally, this can be written as

arg min {min {p(d,c)|c € C1}} € Cy, (1)

where D — C represents the subset of D by removing all points of C'. We call this the separability
condition of a cluster. In essence, by this definition, we are trying to capture our intuition about a
cluster; that is distances between neighbors within a cluster should be smaller than any inter-cluster
distances. Clearly, each of the four “natural” clusters in Figure 1 satisfies this necessary condition.
So does the whole data set. However the subset formed by the cluster in the up-left corner plus any
proper subset of the cluster in the up-right corner does not form a cluster.

Now we can rigorously prove that any cluster, C', corresponds exactly to one subtree of its MST
representation. That is

if c1 and co are two points of a cluster C, then all data points in the tree path, P, connecting
c1 and ¢ in the MST, must be from C.

This statement can be proved rigorously. We only give a sketch of the proof here. Let’s assume
that the statement is incorrect. Hence there exists a point a in path P, which does not belong to C
(see Figure 2). Without loss of generality, we assume that a is right next to ¢; on P so that (c1,a) is
an edge in P. We define a data set A as follows. Initially A = {c;}. We then repeatedly expand A
using the following operation until A converges: select the data point © from D — A, which is closest to
A;ifz € C add x to A. Apparently when A converges, A = C, based on the separability condition (1)
of C being a cluster. This means that there exists a path, P’, from ¢; to ¢y that consists of only data
points of C and all its edges have smaller distances (p) than p(c1,a) (see Figure 2(b)). We know that

kS Al €t al.

Figure 2: (a) A path connecting two vertices ¢; and ¢y of the same cluster C' (C’s boundary is given
by the dashed line) with one vertex a from a different cluster. (b) A schematic of the result of the
expansion operation.

at least one edge of P’ is not in the current minimum spanning tree. For the simplicity of discussion,
we assume that exactly one edge, e, of P’ is not in the current minimum spanning tree (the case with
multiple such edges can be reduced to the case with only one edge). So P U P’ contains a cycle with
one edge of P’ not in the minimum spanning tree. By removing edge (c1,a) and adding e, we get
another spanning tree with smaller total distance. This contradicts the fact that a minimum spanning
tree has the minimum total distance among all spanning trees. By having this contradiction, we have
proved the statement.

The above statement implies that clustering (of multi-dimensional data) can be achieved through
tree partitioning. So to cluster, all we have to do is to find the right set of edges of the MST
representation of the data set and cut them; the connected subtrees will give us the desired clusters.

3 MST-based Clustering Algorithms

Apparently, different clustering problems may need different objective functions, in order to achieve the
best clustering results. In this section, we describe three objective functions and their corresponding
clustering algorithms. All algorithms presented here are for partitioning a tree into K subtrees, for a
specified integer K > 0.

3.1 Clustering through removing long MST-edges

One simple objective function is to partition an MST into K subtrees so that the total edge-distance
of all the K subtrees is minimized. This objective function intends to capture the intuition that two
data points with a short edge-distance should belong to the same cluster (subtree) and data points
with a long edge-distance should belong to different clusters and hence be cut. It is not hard to
rigorously prove that by finding the K —1 longest MST-edges and cutting them, we get a K-clustering
that achieves the global optimality of the above objective function. This simple algorithm works
very well as long as the inter-cluster (subtree) edge-distances are clearly larger than the intra-cluster
edge-distances.

To determine automatically how many clusters there should be, the algorithm examines the optimal
K-clustering for all K = 1,2, ..., up to some large number to see how much improvement we can get
as K goes up. Typically after K reaches the “correct” number (of clusters), the quality improvement
levels off, as we can see in Figure 4(a). By locating the transition point, our program can automatically
choose the number of the clusters for the user.

mMinimuim opanning Lrees 1or ene vlustering 9

3.2 An iterative clustering algorithm

We now describe another clustering algorithm that attempts to partition the minimum spanning tree
T into K subtrees, {7} }fil, to optimize a more general objective function than the previous one:

K
Z Z p(d, center(T;)), (2)

i=1deT;

that is to optimize the K-clustering so that the total distance between the center of each cluster and
its data points is minimized — this is a typical objective function for data clustering. The center of a
cluster is the position which satisfies the condition that the sum of the distances between the position
and all the data points in the cluster is minimized.

Our iterative algorithm starts with an arbitrary K-partitioning of the tree (selecting K — 1 edges
and removing them gives a K-partitioning). Then it repeatedly does the following operation until
the process converges: For each pair of adjacent clusters (connected by a tree edge), go through all
tree edges within the merged cluster of the two to find the edge to cut, which globally optimizes the
2-partitioning of the merged cluster, measured by the objective function (2). Our experience with this
iterative algorithm indicates that the algorithm converges to a local minimum very quickly.

3.3 A globally optimal clustering algorithm

We now present an algorithm that finds the globally optimal solution of the clustering problem defined
as follows. We use a slightly different objective function than the objective function (2). In the previous
one, we want to group data points around the center of each cluster (to be clustered). Here we want
to group data points around the “best” representatives from our data set. The representatives are not
pre-selected but rather they are the results of the optimization process, i.e., our optimization algorithm
attempts to partition the tree into K subtrees and simultaneously to select K representatives in such
way to optimize the objective function (3). More formally, for a given minimum spanning tree 7', we
want to partition 7" into K subtrees, {71, ..., Tk }, and to find a set of data points dy,,dg € D such
that the following objective function is minimized:

K

i=1deT;

where p() is the distance function used. The rationale for using a “representative” rather than the
“center” is that a center may not belong to, or even close to, the data points of its cluster when the
shape of the cluster boundary is not convex, which may result in biologically less meaningful clustering
results. The representative-based scheme provides an alternative when center-based clustering does
not generate desired results. A good property of the representative-based objective function is that it
facilitates an efficient global optimization algorithm.

The very basic idea of our algorithm can be explained as follows. It first converts the minimum
spanning tree into a rooted tree [12] by arbitrarily selecting a tree vertex as the root. Now the parent-
child relationship is defined among all tree vertices. At each tree vertex v, we define the following:
S(v, k,d) is defined to be the minimum value of the objective function (3.3) on the subtree rooted at
verter v, under the constraint that the subtree is partitioned into k subtrees and the representative of
the subtree rooted at v is d. By definition, the following gives the global minimum of objective function
(3.3):

min S(root, K,d). (4)

0 Al €t al.

Our algorithm uses a dynamic programming (DP) approach [12] to calculate the S() values at each
tree vertex v, based on the S() values of v’s children in the rooted MST. The core of the algorithm is a
set of DP recurrences relating these S() values. The boundary conditions of this dynamic programming
system are given as follows: If a tree vertex v does not have any child, then

) +oo, for £ > 1,
S(v,k, d) = { p(v,d), fork=1. (5)

For each v with children, S() of v is calculated as follows

S(v, k,d) = > Sy, kj,d)+ Y S(vj,kj,d)—l—p(v,d)) . (6)

)%nClé’l [ICvll
C.
=Ty iy kimk A IX =1k >0 \w;eC,—X v;€EX

where
S(U],k],d) = xe%l,iar:l#ds(vjakjax)a
and C, represents the set of all children of vertex v. Our algorithm calculates the S(v, k,d) values for
all combinations of v € T, k € [1, K], and d € D.
The correctness of these DP recurrences can be proved based on the observation that S(v,k,d)
can be decomposed as the sum of some combination of its children’s S() values and that the above
DP recurrences covers all possible such combinations. We omit the detailed proof.

The computational time of this algorithm can be estimated as follows. It is not hard to see that
for each tree vertex v, computing its DP recurrences takes

el [K+ 1G]l -1

X . .
v denotes the number of possible ways of selecting Y elements out of X elements.
Hence the total time, 7, for computing all the DP recurrences for the whole tree T is

K+ ||Cy]| -1
T§O<22nm< Hcﬂvuﬂl >||Ov||>.

time, where

veT
Since
K+|Cyf -1 -1
< (K+1)7,
(1G] - 1 (K+1)
we have
T < 2°K°) |G,
v
where s is the maximum number of children of any tree vertex. Since >, o7 ||Cy|| = n — 1, we have

shown that it takes O(n(2K)°) time to compute all the S() values, where n is the number of data
points in our data set and K is the maximum number of clusters we want to consider. To get the
actual clustering that achieves the global minimum value, we need some simple bookkeeping to trace
back which tree edges are cut. This can be done within the computational time needed for calculating
the S() values. We omit further discussions.

This algorithm runs in exponential time only in the maximum number of children, s, of a tree
vertex. To get a sense about how large s could be for a typical application, we have done a number of
simulations to estimate s. In the simulation, we have randomly generated a set of 60-dimensional (60
is chosen arbitrarily) data points, and constructed an MST representation of the set. Then we count

mMinimuim opanning Lrees 1or ene vlustering (

(a) (b)

Figure 3: (a) The distribution of the number of children of the MST representing a data set with 1000
random data points in 60-dimensional Euclidean space. (b) The maximum number of children versus
the total number of data points ranging from 50 to 9,000.

the number of children of each vertex in this MST. Figure 3 summarizes these counts. This study
shows that this global optimization algorithm runs efficiently for a typical clustering problem with a
few hundred data points consisting of a dozen or so clusters.

Note that our algorithm finds the optimal k-clustering for all £’s simultaneously, £ < K, for some
pre-selected K. For a particular application, if we set K to, say, 30 or to certain percentage of the total
number of vertices, we will get the optimal objective values for any £ = 1,2,...., K. By comparing
these values, we can automatically select the number of clusters that is most “natural” as we will
discuss in Section 4.1.

4 Results

4.1 Key features of EXCAVATOR

The core of the EXCAVATOR program is a set of MST-based clustering algorithms. While detailed
description of EXCAVATOR will be discussed elsewhere (manuscript in preparation), we now highlight
a few key and unique features of the EXCAVATOR program, in addition to the MST-based rigorous
and efficient clustering algorithms that we have described above.

e In EXCAVATOR, we provide a number of different ways of measuring the “distance” between two
expression profiles. Based on a user’s selection of the distance measure, the program constructs
the MST representation of the data set. These distances include (a) Euclidean distance, (b)
correlational distance, defined as “1 - the correlational coefficient between two vectors”, and (c)
Mahalanobis distance.

e For a user-selected objective function and an integer value K, EXCAVATOR calculates the
optimal k-clustering for all k& € [1, K], and then compares these values, as shown in Figure 4.
Let Q(k) represent the objective value for the optimal k-clustering for our selected objective
function. It selects the k € [1, K] with the highest following value (see Figure 4(b)) as the most
“natural” number of clusters:

Q(k—1) — Q(k)
Q) — QU +1)
where we define (0) = 0. This function defines a transition profile of Q().

(7)

e EXCAVATOR allows a user to specify if any genes should (or should not) belong to the same
cluster, based on the user’s a priori knowledge, and finds the optimal clustering that is consistent

o] Al €t al.

with the specified constraints. This feature is implemented as follows. If data points are specified
to belong to the same cluster, the algorithm marks the whole MST-path connecting the two
points as “cannot be cut” when doing the clustering. So every data points on this path will
be assigned to the same cluster of these two points. Similar is done for two genes that should
belong to different clusters.

e EXCAVATOR provides different distance measures and different clustering algorithms. For dif-
ferent clustering results, the program has a capability for measuring the similarity of two clus-
tering results, for comparison purposes. Let Dy = {D1, D}, ..., D\} and Dy = {D? D3,...,D3,}
be two clusterings of data set D, one with N clusters and the other with M clusters. We define
the measure of similarity between these two clusterings as

Dl

Pyis (D1, Do) Z ||D1UD2||

LI+ 1021 - (8)

It can be shown that Py;rs has the following upper and lower bounds, Ppin < Pyipr(D1,D2) <
P05, where

Pon = D] + min |3~ IDiI” s o -
i (M=)[DIT+ D1 & (N = DID3[+1Dl) |
Pree = 2|D| . (10)

The following quantity, which ranges from 0 to 1, gives a good measurement on the similarity
between the two clustering results D; and Ds,

Pyirr(D1,D2) — Prin
P maxr — P, min ‘
The value is 1 if and only if the two partition results are the same. The closer the value is to
0, the more dissimilar the two partition results are.

(11)

4.2 Application results

We now outline the application results to two data sets.

4.2.1 Yeast data

Our first application is on a set of gene expression data in the budding yeast Saccharomyces cerevisiae
[1], with each gene having 79 data points (or 79 dimensions). We selected four clusters (68 genes
in total) determined in the paper [1]. These are (1) protein degradation (cluster C), (2) glycolysis
(cluster E), (3) protein synthesis (cluster F), and chromatin (cluster H). Genes in each of these four
cluster share similar expression patterns and are annotated to be in the same biological pathway. The
goal of this application is compare our clustering results with known cluster information.

For this application, we have applied all three clustering algorithms, using both the Euclidean
distance and the correlational distance as the distance measure. The computering time on a PC was
less than 1 second for clustering through removing long MST-edges, less than 7 seconds for the iterative
algorithm, and less than 20 seconds for the globally optimal algorithm. We have achieved virtually
identical clustering results, using any combination of these algorithms and functions. Here we show
the clustering result obtained, using our first clustering algorithm with the Euclidean distance as the
distance measure. Figure 4 shows how the objective function values improve as the number of clusters

mMinimuim opanning Lrees 1or ene vlustering J

(a) (b)

Figure 4: (a) Objective function values versus the number of clusters. (b) The transition profile value,
calculated by Function (7), versus the number of clusters. The dashed line shows the transition profile
for a set of random data.

increases. This provides a profile similar to the “Scree Test” [14]. Based on the transition profile
in Figure 4(b), the program decides a 4-clustering gives the most “natural” number of clusters for
this problem. Figure 5 gives the 4-clustering results, which is 100% in agreement with the annotated
results in [1].

Figure 5: Expression profiles and clustering results of the yeast data. Red indicates high expression
and green indicates low expression.

4.2.2 Arabidopsis data

Our second application is on a set of gene expression data of Arabidopsis in response to chitin elicitation
[15]. The data was averaged over two experiments. Each gene had 6 data points (collected at 10 min.,
30 min., 1 hr., 3 hr., 6 hr., and 24 hr.). 68 genes were selected for clustering, each containing at least
one data point with a 3-fold change of expression level by chitin elicitation. We used both the second
and third algorithms for this problem. Here we present the clustering results by the third algorithm,
with the Euclidean distance as the distance measure. From Figure 6(a), we can see there are two high
peaks in the transition profile, indicating that there are at least two levels of clustering, one with four
clusters and one further dividing the four clusters into seven clusters. Figure 6(b) shows the clustering
results for both the optimal 4-clustering and optimal 7-clustering. Through searching the regulatory
regions of these genes, we found that a known cis-acting element of chitin-responsive genes, i.e., the
W-box hexamer, was over-represented in genes of one of 7 clusters. This suggests that these genes are
not only co-expressed, but also co-regulated through the W-box motif [15].

AU €t al.

(a) (b)

Figure 6: Clustering results for the Arabidopsis data. (a) The transition profile versus the number of
clusters; (b) Clustering results for optimal 4-clustering and optimal 7-clustering.

References

[1]

2]

Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998). Proc. Natl. Acad. Sci.
USA, 95:14863-14868.

Wen, X., Fuhrman, S., Carr, G. S. M. D. B., Smith, S., Barker, J. L., and Somogyi, R. (1998).
Proc. Natl. Acad. Sci. USA, 95:334-339.

Herwig, R., Poustka, A. J., Mller, C., Bull, C., Lehrach, H., and O’Brien, J. (1999). Genome
Res., 9:1093-1105.

Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E. S., and
Golub, T. R. (1999). Proc. Natl. Acad. Sci. USA, 96:2907-2912.

Sherlock, G. (2000). Curr. Opin. Immunol., 12:201-205.

Duda, R. O. and Hart, P. E. Pattern Classification and Scene Analysis. Wiley-Interscience, New
York, 1973.

Gonzalez, R. C. and Wintz, P. Digital Image Processing (second edition). Addison-Wesley, Read-
ing, MA, 1987.

Xu, Y. and Uberbacher, E. C. (1997). Image and Vision Computing, 15:47-57.

Xu, Y., Olman, V., and Uberbacher, E. C. (1998). Pattern Recognition Letters, 19:1213-1224.
States, D. J., Harris, N. L., and Hunter, L. (1993). ISMB, 1:387-394.

Gower, J. C. and Ross, G. J. S. (1969). Applied Statistics, 18:54—64.

Aho, A. V., Hopcroft, J. E., and Ullman, J. D. The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, MA, 1974.

Kruskal Jr., J. B. (1956). Proc. Amer. Math. Soc., 7:48-50.
Cattell, R. (1966). Multivariate Behavioral Research, 1:245-276.

Ramonel, K. M., Zhang, B., Ewing, R., Chen, Y., Xu, D., Gollub, J., Stacey, G., and Somerville, S.
(2001). Submitted.

