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Abstract

We study theoretically and experimentally the population dynamics of the

internal state of 60MeV/u Kr35+ ions traversing amorphous carbon foils. A

quantum transport theory is developed that incorporates the state mixing

induced by the wake �eld of the ion as well as all the coherences generated

by the collisional and radiative redistribution of states. We show that the

internal state of the ion is sensitive to collisional coherences and the wake

�eld. The results of the full simulations are found to be in good agreement

with experimental data.
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I. INTRODUCTION

The internal state of a fast ion traversing a solid represents an open quantum system.

As the ion traverses the foil, its internal state is altered due to the interaction with the

environment, which is made up by particles in the foil and the electromagnetic �eld. The

former leads to multiple collisions which predominantly excites the internal state of the ion

to a broad distribution of states. In turn, the latter leads to the radiative decay of the ion,

which e�ectively counteracts the collisional excitation process. In addition to these processes,

the ion induces an electric �eld in the solid (usually referred to as the wake �eld [1,2]) which

produces a Stark-like mixing among the atomic orbitals of the ion. Understanding the

interplay among all the processes governing the dynamics of the internal state of the ion has

become the objective of numerous works [3{12].

For hydrogen-like atoms or ions, accurate theoretical calculations can be performed and

detailed comparisons with experimental data can be made. In this presentation, we focus on

the case of 60 MeV/u Kr35+(1s) ions traversing amorphous carbon foils. This system is of

particular interest as the radiative lifetime and, hence, the corresponding mean free path is

so short that radiative transitions in
uence the population of excited states inside the solid in

direct competition with collisional processes. This requires a treatment of transport in which

the collisional and radiative redistribution is treated on the same footing. Our quantum

transport theory (QTT) simulating the time evolution of the internal state of the ion is

based on a stochastic time dependent Schr�odinger equation [13,21]. Multiple collisions for

an amorphous foil and radiative decay are stochastic in nature and, after a long propagation

time, are expected to yield an incoherent distribution of states. Interestingly, however, we

show that the partial coherence of the ionic state directly a�ects the population dynamics of

excited states of the ion and the corresponding line emission intensities. In fact, such e�ects

become clearly visible due to the presence of the wake �eld of the ion.

The calculations are compared with experimental data obtained at the LISE (Ligne

d'Ions Super Epluch�es) facility in GANIL (Grand Acc�el�erateur National d'Ions Lourds).
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The population dynamics are analyzed by measuring Lyman and Balmer series emitted

from the atom by a high resolution spectrometer. To probe the dynamics of the internal

state of the ion experimentally, we measure the total intensity of x-rays emitted from the

ion as a function of the foil thickness. Atomic units are used throughout unless otherwise

stated.

II. THEORY

We consider the transmission of a fast hydrogen-like ion with nuclear charge Zp and

velocity vp through an amorphous foil. The main objective of our QTT is to describe the

time evolution of the populations, Pi, of the excited states of the ion. We use time, t, or

propagation path in the laboratory frame, d, indistinguishably since d = vpt and vp = Const..

The zero t = 0 corresponds to the time at which the ion enters the foil. For simplicity, we

will use a single index jii to label the eigenstates of the ion in vacuum, with the implicit

understanding that jii = jn`|m|i, where n is the principal quantum number, ` is the orbital

angular momentum, and | and m| are the total angular momentum and its projection onto

the z-axis. The quantization axis corresponds to the direction of propagation (i.e. z-axis k

~vp).

Our total system consists of the hydrogen-like ion, the amorphous carbon foil and the

electromagnetic �eld. If we denote the state of the total system at a certain time t by a

density matrix �(t), its time evolution is governed by the Liouville equation,

i
@

@t
�(t) = [Htot; �(t)]; (2.1)

where Htot is the Hamiltonian of the total system and [ ; ] is a commutator. The reduced

density matrix �(t) containing all the information about the internal state of the ion can

be obtained by tracing �(t) with respect to the degrees of freedom of the environment: i.e.

�(t) � Tr0[�(t)]. For example, the population or occupation probability to be in state jii is

given by Pi(t) = �i;i(t) = hij�(t)jii. The time evolution of �(t) is governed by a Liouville

equation with a dissipative term
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@t
�(t) = [Hatom; �(t)] +R�(t); (2.2)

where R is a relaxation superoperator that represents the interaction between the elec-

tron and the environment. In the above equation, Hatom is a time-independent Hermitian

Hamiltonian describing the non-dissipative evolution of the electron in the ion,

Hatom �
p2

2
�
Zp

r
+ Vscr(~r) + �Hrel ; (2.3)

where r and p are the position coordinate and the momentum of the electron in a reference

frame �xed to the ion, and �Hrel represents relativistic and Lamb corrections. In Eq. (2.3)

Vscr(~r) denotes the screening potential or wake potential induced by the ion. For convenience,

we de�ne H0 as the internal Hamiltonian of the ion in vacuum,

H0 �
p2

2
��Hrel +

Zp

r
; (2.4)

whose eigenvalues and eigenenergies are given by

H0jii = Eijii : (2.5)

The explicit construction of R in Eq. (2.2) is, in general, a formidable task since it

involves the many-body dynamics of the environment to which the open system couples.

The simplifying assumption which makes the determination of R feasible is perturbation

theory, according to which the dynamics of the environment remains decoupled from �.

Even after the evaluation of R within perturbation theory, solving the Liouville equation is

a tedious task. The Liouville equation could be solved using an expansion of the density

matrix in a �nite basis set of eigenstates jii, i = 1; 2; :::; N , where N is the rank of the

expansion. This reduces the Liouville equation to a �nite system of N2 coupled equations.

Since the representation of the density matrix has rank N2, a �nite representation of R

involves N4 elements. This makes the explicit solution of the Liouville equation diÆcult.

The simplest approximation to the Liouville equation consists of neglecting the couplings

between the o�-diagonal matrix elements of the density matrix (�i;j , i 6= j) and the diag-

onal matrix elements. This reduces the system of N2 coupled equations to a system of N

equations usually referred to as rate equations:
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d

dt
�i;i(t) =

X
i;j

�i!j�i;i(t)� �j�j;j(t) (2.6)

where �j =
P

i �i!j is the inverse of the lifetime of state jii and �i!j is the transition rate per

unit time from state jii to state jji induced by the environment, which can be decomposed

into collisional, radiative and wake mixing rates, �i!j = �coll
i!j + �rad

i!j + �wake
i!j .

The system of rate equations (2.6) usually provides a reasonable overall description

of the time evolution of the populations. However, clear evidence of its limitations are

abundant and are due to the disregard of coherences (i.e. o�-diagonal matrix elements of

the density matrix). Recently, the explicit treatment of coherences has been incorporated

within quantum transport approaches [13,15,16]. One of these approaches directly solves

the Liouville equation as a system of coupled equations. In order to accomplish this, in

Refs. [15,16] estimates were made to select a small number of active o�-diagonal elements

of � such that the dominant elements of R could be stored in the memory of computers. In

this paper, we adopt an alternative scheme which keeps all elements of � and all couplings

to the environment but avoids dealing directly with a �nite representation of R. This can

be accomplished using a Monte Carlo method along the lines of Refs. [13,14]. This method

is, in the limit of vanishing sampling error, equivalent to solving Eq. (2.2) but involves only

matrices with dimension N2. We refer to this method as quantum transport theory (QTT).

The main idea behind the QTT is that the reduced density matrix �(t) can be decom-

posed as an incoherent average over pure states [17]. If the electron is initially, at t = 0, in

a pure state j0i,

�(t) =
1

Ntraj

NtrajX
�=1

j �(t)ih �(t)j ; (2.7)

where Ntraj denotes the number of pure states (or quantum trajectories) involved in the

average whose boundary condition is

j �(t = 0)i = j0i : (2.8)

Thus, solving Eq. (2.2) within the QTT reduces to calculating the wavefunctions  �(t)

followed by the averaging in Eq. (2.7). In numerical simulations, the total number of quan-
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tum trajectories, Ntraj, has to be large enough so that the right hand side of Eq. (2.7)

converges. Each of the wavefunctions is called a quantum trajectory and describes a di�er-

ent random sequence of interactions with the environment. The stochastic time evolution

of the quantum trajectories is calculated by constructing their corresponding time evolution

operator U�(t; 0) such that

j �(t)i = U�(t; 0)j0i : (2.9)

We decompose the time evolution operator into a product of two types of evolution operators:

U�(t; 0) = U�
cont(t; tn)

nY
k=1

U�
dis(tk)U

�
cont(tk; tk�1) ; (t0 = 0): (2.10)

One type, U�
cont(tk+1; tk), stands for a continuous change of the wavefunction during the time

period [tk+1; tk]. The other type, U
�
dis(tk), induces a discontinuous change of the wavefunction

(a quantum jump) at randomly chosen times t = tk. Finite representations of these operators

have dimension N2 and are easier to treat numerically than the full representation of R

in Eq. (2.2). Recently, procedures have been developed for constructing random subsets of

quantum jump times ftkg and the quantum jump operators which yield the correct relaxation

superoperators for both radiative decay [18,19] and multiple collisions [13,21].

The present QTT easily allows us to investigate the relative role of coherences in the

population dynamics. For example, one can eliminate coherences by multiplying the matrix

elements of the evolution operator by random phases: i.e. replacing hijU�
contjji by hijU

�
contjji�

exp(i�i;j), where �i;j are independent random phases uniformly distributed in the interval

(0; 2�). In this case, the time evolution becomes equivalent to the system of incoherent rate

equations (2.6). We investigate in this paper the role of collisional coherences by multiplying

random phases the matrix elements of collisional jumps U�
dis(tk).

III. EXPERIMENT

Our experiment has been performed at GANIL on the LISE facility. The complete

experimental set-up has been already described in detail elsewhere [20]. Here we summarize
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its main characteristics. Beams are directed onto self-supported amorphous carbon foils

with measured thicknesses and purity [20]. The foils can be tilted to change the e�ective

transport thickness. Foil thicknesses are changed from 3 to 220 �g=cm2 to study the ion

transport from near single collision to equilibrium limit. Balmer � lines are also measured

using high-resolution high-transmission Bragg-crystal spectrometers. Each photon detection

system is placed at a speci�c angle with respect to the beam direction to assure polarization-

insensitivity of the measurements.

From the Balmer lines (see Table 1) and branching ratios (see Table 1), we can obtain

the ratio between the total intensities of photons emitted from the 3p1=2 and 3s1=2 states as

well as from the 3d3=2 and 3d5=2 states,

I3p1=2
I3s1=2

=
1

0:1874

�
Ba4
Ba1

� 0:5507
�

(3.1)

and

I3d3=2
I3d5=2

= 6:502
Ba2
Ba3

: (3.2)

Details of this analysis are explained in Ref. [20]. Di�erences between the coeÆcients above

and those in Ref. [20] are due to the relativistic corrections to the radiative transition rates.

The total photon intensity of all lines emitted from a particular level is given by

Ii = �rad
i

Z
1

0

dtPi(t): (3.3)

This intensity provides direct information on the time integral of the population Pi(t)

(weighted by a constant transition rate). Note that the time integral involves the popu-

lation while the ion is both inside the solid and after foil exit. Therefore, the population is

initially zero, increases due to excitation inside the foil, and tends to zero again for t!1,

when the atom relaxes to the ground state by radiative decay after foil transmission. Since

transport through foils of di�erent thickness yield di�erent intermediate populations, changes

in the line intensities provide direct evidence of the changing behavior of the populations

due to transport. Since energy levels are independent of m|, the experimentally observable

intensities correspond to
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In;`;| =
X
m|

In;`;|;m| (3.4)

which provide direct information on the populations of the n; `; |-subshells.

IV. RESULTS

Figure 1 displays results of realistic transport simulations of 60MeV/u Kr35+(1s) ions

traversing amorphous carbon foils. The �gure shows the populations of the 3p1=2 and 3s1=2

energy levels at the foil exit as a function of the foil thickness. The populations �rst increase

monotonically and subsequently reach a plateau. The increase of the populations is due to

multiple collisions which excite the electron from the 1s state into these levels. For increasing

foil thickness a plateau is reached as the 1s state of Kr starts to become considerably depleted

and while, simultaneously, the excited states are also depleted by multiple collisions. For foils

thicknesses beyond those depicted in the �gure, the populations decrease monotonically as a

function of foil thicknesses and ionization starts playing an important role. Here we discuss

ion-solid interactions for foil thicknesses less than 2:5 � 104 a.u., which is the maximum

foil thickness utilized in our experiment. In this region, energy levels are mostly populated

by direct transitions from the ground state rather than from multiple excitations involving

several n-levels. In turn, there exists a large degree of intrashell collisional and wake-induced

mixing. The calculations were obtained using an expansion of the wavefunction of the

projectile electron in a basis set involving bound states of the ion in the energy levels

1 < n < 6, which corresponds to a total number of 182 states. The ionization probability

in typical experiments is small and, therefore, using this basis is a good approximation. For

Vsc(~r), we use the n dependent electric �eld from Ref. [15].

In order to analyze the e�ect of collisional coherences, we display in Fig. 1 simulations

with and without collisional coherences. Clearly, ignoring collisional coherences leads to

departures from the full transport simulations. These departure become pronounced in

Figure 2, which displays the ratio of the populations as a function of foil thickness as well

as the relative emission intensities. For very thin foils, these ratios are equal to the ratio
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between the excitation probability from the 1s state to the 3p1=2 and 3s1=2 states under

single collision conditions. For increasing foil thicknesses, the ratios provide information on

the time development of the internal state of the ion. In the absence of either the wake

�eld or collisional coherences, the populations of the 3p1=2 and 3s1=2 states become very

similar for thick foils. However, collisional coherences in combination with the wake �eld

shifts the population systematically towards the 3p1=2 state. This is due to the fact that for

the relative phases associated with the excitation process, the wake �eld tends to increase

the ratio of the 3p1=2 population to the 3s1=2 population. Clearly, since the two levels are

coupled by the wake �eld, the initial coherence between the two levels plays a crucial role in

the time evolution of the population ratio for thin foils. Only inclusion of both the wake �eld

and collisional coherences leads to the proper intrashell mixing of states and yields photon

intensities that are in good agreement with the experimental data. It is also noteworthy

that the calculated ratio I3p1=2=I3s1=2 obtained from the full QTT simulation increases for

increasing foil thickness whereas the ratio of the populations at the foil exit are a decreasing

function of foil thickness. This is a direct consequence of radiative decay during transport.

In summary, in order explain the experimental �ndings, we �nd that the Stark mixing

and collisionally induced coherences between the 3s1=2 and 3p1=2 states needs to be accounted

for within the transport simulations. The experiment provides clear evidence of the interplay

between the wake �eld and collisional coherences.
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Table 1: Labeling and branching ratios of the Balmer lines.

Transition Label Branching ratio

3s1=2 !2p3=2 Ba1 0.64485

3d3=2 !2p3=2 Ba2 0.15379

3d5=2 !2p3=2 Ba3 1.

3p1=2 !2s1=2 Ba4a 0.12087

3s1=2 !2p1=2 Ba4b 0.35515

3p3=2 !2s1=2 Ba5a 0.12340

3d3=2 !2p1=2 Ba5b 0.84621

12



FIGURES

FIG. 1. Populations of the 3p1=2 and 3s1=2 states at foil exit as a function of foil thickness.

Solid lines: full calculation. Dotted lines: calculation without collisional coherences.

FIG. 2. Population ratio and line emission intensity ratio as a function of foil thickness. Symbols

with error bars: experiment. Solid lines: full calculation. Dashed lines: calculation without the

wake �eld but with collisional coherences. Dotted lines: calculation without collisional coherences

but with wake �eld.
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