
The submitted manuscript has been authored by a contractor of the U.S. Government
under contract No. DE-AC05-00OR22725.  Accordingly, the U.S. Government retains a
nonexclusive, royalty-free license to publish or reproduce the published form of this
contribution, or allow others to do so, for U.S. Government purposes.

August 17, 2001 Paper No. 36
Topic No. 6

Computational Physics and Engineering Division (10)

A Monte Carlo Approach to Calculate Probability Tables 
for the Unresolved-Resonance Region Using the

AMPX Cross-Section Processing System

Michael E. DUNN1,* and Luiz C. LEAL1

1Computational Physics and Engineering Division, Oak Ridge National Laboratory,** 
P. O. Box 2008, Oak Ridge, TN 37831-6370, USA

Submitted to the
International Conference on Nuclear Data for Science and Technology (ND2001),

October 7%12, 2001,
Tsukuba, JAPAN

KEYWORDS:  probability tables, unresolved-resonance region, Monte Carlo, cross section, 
   AMPX

__________________________________

*Corresponding author, Tel. (865) 574-5260, Fax.  (865) 576-3513 
E-mail: dunnme@ornl.gov and leallc@ornl.gov

**Managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the
U.S. Department of Energy.

http://www.cped.ornl.gov
http://www.ornl.gov
mailto:dunnme@ornl.gov
mailto:leallc@ornl.gov
http://www.ut-battelle.org/
http://www.energy.gov/
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A new module, PURM (Probability tables for the Unresolved Region using Monte Carlo), has been developed for
the AMPX-2000 cross-section processing system.  PURM uses a Monte Carlo approach to calculate probability tables
on an evaluator-defined energy grid in the unresolved-resonance region.  For each probability table, PURM samples a
Wigner spacing distribution for pairs of resonances surrounding the reference energy.  The resonance distribution is
sampled for each spin sequence (i.e., R-J pair), and PURM uses the )3-statistics test to determine the number of
resonances to sample for each spin sequence.  For each resonance, PURM samples the resonance widths from a Chi-
square distribution for a specified number of degrees of freedom.  Once the resonance parameters are sampled, PURM
calculates the total, capture, fission and scatter cross sections at the reference energy using the single-level Breit-Wigner
formalism with appropriate treatment for temperature effects.  Probability tables have been calculated and compared
with NJOY.  The probability tables and cross-section values that are calculated by PURM and NJOY are in agreement,
and the verification studies with NJOY establish the computational capability for generating probability tables using
the new AMPX module PURM.

KEYWORDS:  probability tables, unresolved-resonance region, Monte Carlo, cross section, AMPX

I.  Introduction

In the United States, the Evaluated Nuclear Data File
(ENDF) system 1) is the repository for evaluated cross-section
data.  The AMPX-2000 code system, which is maintained at
the Oak Ridge National Laboratory (ORNL), is used to process
ENDF evaluations and generate continuous-energy and
multigroup cross-section libraries.  For resonance isotopes in
neutron cross-section evaluations, the unresolved-resonance
region (URR) is an energy region in which the experimental
resolution is inadequate for determining the resonance
parameters of individual resonances.  Energy-averaged
unresolved-resonance parameters are typically provided for the
URR, and the resonance parameters are averages of resolved-
resonance parameters over specific energy intervals; however,
the values of the parameters vary as a function of the different
energy intervals.  Because of the statistical nature of the
unresolved-resonance parameters, probability tables can be
used to provide cross-section probability distribution functions
for energy ranges at specific temperatures within the URR.  

Different approaches have been used to generate
probability tables for an isotope of interest.  The conventional
or historical approach is to generate continuous-energy cross-
section data from a "ladder" of resonances and determine
contributions to a probability table based on the point data.
This process is then repeated over additional ladders of
resonances until the desired number of ladders is processed. 
________________________________________________
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The ladder approach, which is described by Levitt,2) is the
basis for the probability-table method in NJOY.3) 

A new and different procedure relative to the "ladder"
approach is used in the AMPX cross-section processing
system that has been developed at ORNL.  A new AMPX
module, PURM has been developed to calculate probability
tables in the URR using Monte Carlo (MC) procedures.  The
objective of this work is to demonstrate the capability for
calculating probability tables using PURM.

II.  Methodology

The objective of the probability-table method is to
calculate a distribution function for the cross-section values in
a specific energy range within the URR.  The approach is in
direct contrast with the procedures of the resolved-resonance
region (RRR) in which the neutron cross section is obtained
at a specific energy using the appropriate resonance formula.
The cross-section distribution function is characterized by
having a mean value that is equivalent to the infinite-dilution
cross-section value for the energy range of interest.  

1.  Resonance-parameter Sampling

PURM uses a MC procedure to calculate probability
tables on the evaluator-defined energy grid in the unresolved
region.  The MC procedure used in PURM is based on the
methodology of the code URR4) that was developed at ORNL
in the late 1980s.  As opposed to generating a ladder of
resonances, PURM determines pairs of resonances or levels 
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surrounding the reference energy or energies for each table.
As in the ladder approach, the level spacings are sampled
from a Wigner distribution:

where x is the ratio of the level spacing to the mean level
spacing provided in the ENDF data.  The resonance and mean
level spacing are denoted as DR , J and < D

R , J >, respectively,
for relative neutron-nucleus angular momentum, R, and
resonance spin, J.  The spacing distribution in Eq. (1) is a
probability density function (PDF) that is normalized to 1.  In
order to sample the level spacing for a specific R-J series of
resonances (i.e., D

R,J), the PDF is converted to a cumulative
distribution function (CDF) by integrating Equation (1) from
0 to x.  The value of x is obtained by setting the CDF equal to
a random number, R,  between 0 and 1.  After solving for x,
the resonance spacing is calculated as the product of x and
< DR , J >.

Once the spacing is sampled from the Wigner
distribution, the position, xN, of the reference energy in the
spacing is selected from a uniform distribution (i.e., xN =
R D

R ,J).  The positions of the first and second resonances
relative to the reference energy, E0,  are obtained by the
following expressions:

and

The first pair of resonances that are located above and
below the reference energy is determined by Eqs. (2) and (3),
respectively.  For the remaining pairs of resonances to be
processed, the resonance spacings are sampled from the
Wigner distribution, and the location of the resonances are
determined using a procedure that is analogous to the steps for
the first pair of resonances.  Although the procedure for
sampling the resonance spacing is straightforward, the code
must determine the appropriate number of pairs of resonances
to sample.  To estimate the number of resonances to sample,
PURM uses the )3-statistics test which is described in Section
II.2.

Once the distribution of energy levels is sampled, the
resonance widths must be sampled for each resonance.  In the
unresolved region, the ENDF data provide average widths for
reference energies in the URR.  The distribution function for
the resonance widths follows a Chi-square distribution with a
designated number of degrees of freedom, <:

where y is the ratio of the resonance width for a particular
channel (i.e., '8c) to the mean channel width for a given
energy range (i.e., <'8c> ).  The different channels, c, that are
considered are fission, capture and scattering. In Eq. (4), the
quantity G(</2) is the mathematical gamma function.  For the
neutron width, < is typically equal to 1, and Equation (4) has
the form of the Porter-Thomas distribution law of the neutron
width.5,  6)  Fission is regarded as a few-channel process, and
two or three degrees of freedom (< = 2 or 3) are typically
assumed for the fission width distribution.  Regarding neutron
capture, there are a large number of capture channels that are
available, and the number of degrees of freedom is assumed to
approach infinity (< 64), and the Chi-square distribution
becomes a Dirac-delta function centered at '8( = < ' >.  As
noted previously, the ENDF data provide the average
resonance widths along with the number of degrees of
freedom for the corresponding Chi-square distribution.
During the MC simulation, PURM obtains the widths for each
resonance by sampling the Chi-square distribution with the
corresponding number of degrees of freedom.

The sampled widths and spacings are used to calculate
cross sections in the URR using the single-level Breit-Wigner
(SLBW) formulae.  PURM has the capability to calculate
temperature-dependent cross sections in the unresolved
region.  The sampled resonance parameters are used in
conjunction with the SLBW formulae to calculate
temperature-dependent cross sections for scattering, capture,
fission and total.  The SLBW formulae4) are well documented
and not presented in this paper.  Note that the temperature
dependence of the cross sections are obtained using the
symmetric and antisymmetric-line-shape functions (i.e., R and
P, respectively) that are documented in most reactor theory
textbooks.

2.  Dyson and Mehta )3-Statistics Test

One of the essential tasks for constructing the resonance
distribution for a given spin sequence (i.e., R-J pair) is the
determination of the appropriate number of pairs of
resonances to process.  A useful tool for evaluating the
distribution of resonances is the )3-statistics test that was
developed by Dyson and Mehta.5, 7)  PURM uses the )3-test to
determine the appropriate number of pairs of resonances to
process for each spin sequence. 

The )3-test provides a measure of the mean-square
deviation between the number of observed energy levels
within an energy interval from Ei to Ef :

7)

where 2L is the total number of resonances and N(E) is the
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observed cumulative number of resonances as a function of
energy.  In Eq. (5), a and b are the slope and constant,
respectively, for a linear fit to the observed cumulative number
of resonances as a function of energy.

The numerical procedures that are provided in Ref. 5 for
calculating )3 for a spin sequence are used in PURM to
evaluate the expression in Eq. (5).  For the sampled
distribution of resonances for each spin sequence, PURM
calculates a )3 value and the linear fit for the cumulative
number of levels (i.e., N(E) = aE + b ).  The Dyson and Mehta
)3-test also predicts that the theoretical average value for )3

is given by the following expression:

where n is the number of energy levels observed in the interval
from Ei to Ef.  The variance of  <)3> is 1.169/B4.  

The objective of the )3-test is to determine a resonance
spacing distribution that provides a )3 value that is in
agreement with <)3>.  In addition to the comparison between
the calculated and theoretical values for )3, the linear fit for
the cumulative number of levels should agree with the
observed number of levels in the sampled distribution.  

There is a two-part convergence problem for the
implementation of the )3-statistics test.  One part involves the
linear fit for N(E) as a function of energy, and the second part
involves the convergence of the )3 values.  In other words,
reasonable )3 values (i.e., within 2 standard deviations of
theoretical value) may be obtained for a sampled distribution;
however, the cumulative number of resonances that is
predicted by the linear fit may not correspond to the observed
number of resonances for the distribution.  In contrast, an
acceptable linear fit for the cumulative number of resonances
may be obtained for a sampled distribution, but the )3 value
for the sampled distribution may disagree with the theoretical
value by more than two standard deviations.  The )3 test is
extremely sensitive to the location of each level in the
distribution.

Regarding implementation of the )3 test, PURM
determines the number of levels to sample for each spin state
based on a linear fit for the cumulative number of observed
levels.  In other words, PURM samples a Wigner distribution
to obtain a distribution of resonances using some initial value
for the pairs of resonances to sample about the reference
energy.  The linear fit for the cumulative number of levels is
compared with the observed number of levels in the sampled
distribution.  The number of pairs of resonances to sample is
incremented until the observed number of levels in the
sampled distribution is predicted to within 0.1% by the linear
fit for N(E).  The )3 value is also calculated for the sampled
distribution; however, PURM currently does not attempt to
find a resonance distribution that has a )3 value within two
standard deviations of the theoretical value as well as an
acceptable linear fit for the cumulative number of levels.
Extensive CPU times would be required to seek convergence
for both the )3 value and an acceptable fit for the cumulative

number of levels.  PURM searches for the distribution that
provides an acceptable linear fit for the cumulative number of
levels.  Based on calculational experience, accurate cross-
section values can be obtained by seeking convergence for the
cumulative number of levels. 

3.  Monte Carlo Simulation

Because the URR is an energy region where the
parameters are averages of resolved-resonance parameters
over an evaluator-defined energy region within the URR,  MC
procedures can be used to calculate the average cross sections
within the URR.  Since random variables are used in the
sampling procedures for the resonance parameters, different
resonance parameters and cross sections can be obtained from
different random number sequences.  However, the MC
simulation of the problem can estimate the desired cross-
section quantity by observing the behavior of a large number
of individual histories.*    The exact solution can be approxi-
mated if a sufficiently large number of histories are processed.
This concept is often referred to as The Law of Large
Numbers.

For the purposes of discussion, a single history or ith

estimate of a cross-section quantity is denoted as  Fc i, where
c denotes either total, capture fission or scatter.  For each
history, pairs of resonances are randomly sampled for each R-J
spin sequence, and the number of resonances is determined
using the )3-statistics test.  For each resonance, the partial
widths are sampled from a Chi-square distribution as defined
by Eq. (4).  The resonances and corresponding widths are
sampled for each R-J spin sequence.  The ith estimates for the
capture, fission and scatter cross sections are obtained using
the SLBW formulae and summing the contribution from all R
and J states.  The ith estimate for the total is obtained by
summing the capture, fission and scatter cross section.  The
process is repeated for each history until n histories have been
processed.  The MC estimate of the mean cross-section value
is given by the following expression with the reaction
identifier, c, implied in the expression:

Note that the definition of j will be provided shortly.  The
value of FG j will approach the true mean as n approaches 4.
The variance of FG j is estimated with the following expression:

In Eq. (7), the value of FG j is obtained from n estimates of

*A history denotes a single calculation or estimate of the total cross-
section at an energy E from the sampled resonances and
corresponding widths.  Note that the capture, fission and scatter
cross sections are also calculated as part of a single history.
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the mean value.  Let the quantity defined by Eq. (7) constitute
a "batch" estimate of the mean value.  Using the batch
terminology, the jth-batch estimate for the mean value is
denoted with the subscript j in Eq. (7).  If a different set or
batch of n random samples is taken, a different mean cross-
section value would be calculated.  Based on the Central Limit
Theorem,8) if N batch estimates for FG j are obtained, the
distribution of FG j will approach a normal distribution as N
increases.  The Central Limit Theorem implies that the
statistical nature of the distribution of FG j is independent of the
actual distribution of the individual samples (i.e., Fi).  If N
batches are processed, the "grand mean" is calculated by
averaging over all the batches:

The variance is calculated with the following expression:

In PURM, the mean value for the total, capture, fission and
scatter cross sections is obtained using Eq. (9) based on
N batch estimates of each reaction. 

Each probability table is constructed using monotonically
increasing band limits (i.e., B1 < B2 < ... < Bk < ... < BK < BK+1)
that are based on the total cross section.  If K cross-section
bands are defined, K+1 band limits are required to define the
table.  The band limits increase in value with a corresponding
increase in band number.  As a result, the lower cross-section
band value for the first band is the minimum band value for
the table, and the upper cross-section band value for the last
band is the maximum band value for the table.  Because the
table construction is based on the total cross section, the
average total cross-section value in each band should also
increase monotonically with increasing band number.  Note
that the band averages for the corresponding partial reaction
cross sections are conditional averages that correspond to the
average total cross section for the band.  Consequently, the
band-average cross-section values for capture, fission and
scatter will not necessarily increase monotonically.

In PURM, there are three options to determine the band
values for each table.  For the first option, the user can specify
the band values for each table, and for the remaining two
options, PURM can construct each table with either equal- or
nonequal-probable cross-section bands.  If nonequal-probable
cross-section bands are used, the total cross-section band
values are calculated with the following expression:

where Bmin is the lower bound for the second band, and Bmax is

the lower bound for the last band (i.e., BK).  The values of Bmin

and Bmax can be specified by the user or determined by the
code.  If the user does not specify the values of Bmin and Bmax,
PURM estimates these values.  Once the values of Bmin and
Bmax are established, PURM uses Eq. (11) to construct the
cross-section band limits for each probability table.  Note that
B1 and BK+1 are not determined prior to the calculation of a
probability table.  The values of B1 and BK+1 represent the
absolute minimum and maximum cross-section values of the
MC simulation.  As a result, the absolute minimum and
maximum cross-section values are determined during the
calculation of each probability table.  The value of B1 must be
$ 0 and < B2, and the value of BK+1 can be any value that is
greater than BK. 

Once the cross-section band limits are established for a
table, PURM performs a MC simulation for each table using
a specified number of iterations or histories for a specified
number of batches.  For a single history in PURM, the
procedures of Section II.1 and II.2 are used to sample the
resonance parameters for the reference energy point in the
URR.  Subsequently, the SLBW formulae are used to calculate
the scatter, capture, fission and total cross sections at the
reference energy.  As noted previously, the calculation of the
total cross section and corresponding partial reactions at the
reference energy constitute a single history.

For each history in a batch, the calculated total cross-
section value is compared with the cross-section band limits
for the table.  The total cross-section is added to the
appropriate cross-section band (i.e., kth band) within the
probability table.  In addition, a counter assigned to the band
is advanced by unity.  The corresponding band values for the
scatter, capture and fission cross sections are also added to the
appropriate registers for the kth band.  Note that the band
selection for the partial reactions is based on the value of the
total cross section.  At the completion of the number of
histories for the batch, the average value for the total cross
section for the kth band (i.e., F G t, k) is calculated by dividing the
cumulative sum for the band by the number of tallies within
the band.  The corresponding average band values for the
scatter, capture and fission cross sections are calculated in a
similar manner to the total cross section.  The batch estimate
for the probability for each band is obtained by dividing the
number of tallies for the band by the number of histories in a
batch.  Once the initial batch is completed, the next batch is
processed using the same procedure for each history in a
batch.  The calculation for a table is complete when all of the
batches have been processed.

Due to the nature of the calculational procedures, PURM
provides a mechanism for monitoring the convergence of the
cross-section calculation.  During the MC calculation for a
table, PURM stores a "running" average (i.e., by batch
processed) of the total, capture, fission and scatter cross
section for the entire probability table.  PURM has the
capability to plot the cross-section calculation by batches run.
Also, PURM provides histogram frequency plots for each
calculation for a reaction and performs a test for normality for
the MC calculation for each reaction.



III.  Results

PURM has been used to calculate probability tables for
ENDF/B-6 235U (MAT = 9228).  Results are provided to
demonstrate the capabilities of PURM.  In addition,
comparisons are made with the NJOY99.14 module PURR to
verify the calculational results obtained with PURM.  

For ENDF/B-6  235U, the URR extends from 2.25 keV to
25 keV, and the evaluation has 14 reference energies in the
unresolved region.  PURM was used to calculate 14
probability tables that correspond to the reference energies in
the evaluation.  Each probability table was calculated at 300 K
using 200 batches with 50 histories per batch for a total of
10,000 histories per table.  The total number of histories is
relatively low compared with typical MC radiation transport
calculations (e.g., deep-penetration shielding problems,
eigenvalue calculations, etc.).  Fortunately, probability-table
calculations do not have the complexities that are associated
with radiation transport problems (e.g., complex geometry,
particle streaming,  etc.).  As a result, a probability table
calculation is generally a well-behaved problem.  Therefore,
a relatively large number of histories is not required to obtain
acceptable statistics in a probability-table calculation.

The PURM results for the probability table at 2.25 keV
are presented in Table 1.  For 235U, the probability tables were
calculated with 5 nonequal probable cross-section bands.  The
probability and standard deviation associated with each band
are also provided in Table 1. Moreover, the average cross-
section values and standard deviations for the total, capture,
fission and scatter cross-sections are provided for each band
within the probability table. PURM also provides the average
cross-section values for each table, and the average values (in
barns) for total, capture, fission and scatter are 19.68 ± 0.04,
2.04 ± 0.01, 5.70 ± 0.02 and 11.94 ± 0.01, respectively.  Note
that the average cross-section values for the table represent the
infinite dilution values for 235U at 2.25 keV and 300 K.

For each probability-table calculation, PURM provides
the results of the )3-statistics.  The number of levels that is

predicted from the )3-statistics test are provided in Table 2
for the 235U calculation at 2.25 keV.  In Table 2, the number
of levels for the calculation is provided for each R-J spin
sequence.  Note that the observed number of levels, which is
obtained by iteration, are presented in Table 2.  Based on the
)3-statistics test, the predicted number of levels, N(E), is also
provided for comparison.  The value for N(E) is obtained by
performing the )3-statistics analysis for the observed number
of levels and corresponding spacing distribution.  As shown
in Table 2, the predicted values are within 0.01% of the
observed number of levels in the MC calculation. 

Table 2 Predicted Number of Levels from )3-Statistics for 
235U at 2.25 keV

R J
Observed No.

of Levels N(E) a b
0 3. 727 727.01 1.02 -1.93×103

0 4. 895 895.05 1.28 -2.43×103

1 2. 538 537.94 0.76 -1.44×103

1 3. 717 717.03 1.02 -1.94×103

1 4. 889 889.03 1.26 -2.39×103

1 5. 997 997.0  1.41 -2.68×103

To help visualize the calculated results that are presented
in Table 1, the probabilities as a function of the cross-section
bands are plotted in Fig. 1.  In addition, NJOY99.14 was used
to calculate probability tables for 235U at 300 K.  The
probabilities that are obtained with NJOY at 2.25 keV are also
presented in Fig. 1.  Based on the results in Fig. 1, the PURM-
calculated probabilities agree with the NJOY values.  Similar
agreement is obtained for the NJOY and PURM average band
values for the total, capture, fission and scatter cross sections.
Note that similar results are also obtained for the remaining
13 probability-table calculations for 235U.  Based on the
verification studies with NJOY, the probability tables as
calculated by PURM are suitable for use in nuclear
applications.

Table 1  Probability Table for 235U at 2.25 keV and 300 K
Band Limitsa Probabilityb Totala, b Capturea, b Fissiona, b Scattera, b

1 11.86 0.131 (0.003) 14.35 (0.02) 0.72 (0.01) 2.27 (0.02) 11.36 (0.02)
2 15.30 0.380 (0.005) 17.13 (0.02) 1.37 (0.01) 4.07 (0.02) 11.70 (0.01)
3 18.97 0.313 (0.005) 20.97 (0.03) 2.33 (0.02) 6.62 (0.02) 12.02 (0.01)
4 23.51 0.142 (0.003) 25.69 (0.04) 3.59 (0.05) 9.50 (0.06) 12.60 (0.03)
5 29.15

56.28
0.034 (0.002) 31.98 (0.16) 5.50 (0.13) 13.06 (0.20) 13.42 (0.09)

a Cross-section values are in barns
bQuantities in parentheses represent 1 standard deviation
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IV.  Summary

PURM is a Monte Carlo code that has been developed
to  calculate probability tables for the unresolved-resonance
region.  In an effort to establish the new procedures,
probability tables have been calculated for ENDF/B-6 235U
using PURM and NJOY.  The probability tables and
corresponding cross-section values obtained with both
codes are in agreement.  As a result, the verification studies
establish the computational capability for generating
probability tables using the new AMPX module PURM.
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