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Abstract 
In recent years, interest in the area of the performance of multi-robot teams in 
cooperative tasks has significantly increased. As a result, scientists have delved into a 
new realm of research and experimentation with multi-robot learning. This paper 
examines various types of robot learning and the benefits or challenges associated 
with each type. The Cooperative Multi-Robot Observation of Multiple Moving 
Targets (CMOMMT) application is presented and viewed as a valuable testing 
domain in the field of multi-robot teams and cooperative learning. The hand-
generated approach to this application (A-CMOMMT) will be used as a control model 
in our research into generating learning techniques that can improve upon this 
approach's results. The goal for this particular project is to improve the performance 
of a previous approach that uses lazy Q-learning and self-organizing maps. This 
project is designed to generate a learning algorithm that reaches or exceeds the 
performance of the hand-generated approach. We do this by introducing a component 
that allows the robots to not only be aware of the nearby targets, but also of the 
nearby robots and their actions. The ultimate and considerably broader goal of this 
research is to develop learning techniques that allow for a more generalized 
application of cooperative robotics to numerous real world problems.   
 
 
Introduction 
 
In recent years, significant progress has been made in the field of cooperative 
robotics. As a result, the interest in the area of robot learning and its application to 
multi-robot teams has also grown. This growth is due greatly to the wide variety of 
problems that these multi-robot teams can be applied to. Probably the most common 
applications thus far have been in areas such as air fleet control, box pushing, 
predator/prey problems, and multi-robot soccer. All of these problems require a great 
deal of reliability and flexibility, which a multi-robot team provides. But only in the 
multi-robot soccer problem are the actions of one robot dependent upon the current 
actions of the other robots. These types of tasks are characterized as being inherently 
cooperative because the success of the team is dependent upon the combined actions 
of the robot team rather than the individualized tasks assigned to each robot. A 
problem similar to this one has been introduced in order to add to the already 
challenging domain of multi-robot learning. This problem is called the Cooperative 
Multi-Robot Observation of Multiple Moving Targets (CMOMMT). This application 
-although similar to the multi-robot soccer problem due to the fact that it is an 
inherently cooperative task- is different in the respect that it is necessary for the 
existence of scalability to very large numbers of robots.  
   The motivation behind using this application has been explained and tested in 
other work. So, in this paper, we examine various types of robot learning and the 
benefits and drawbacks of each type with respect to the CMOMMT application. We 
will also describe several approaches to the CMOMMT application that have been 
tested or are in the process of being tested in an attempt to surpass the results 
generated through the usage of the handed-generated approach to this problem. 
Finally, we will summarize our analytical results, discuss future work on this project, 



and draw conclusions about how our results may affect the overall study of learning 
in multi-robot teams. 
 
The Need for Robot Learning 
 
Learning is often described as being one of the fundamentally necessary components 
of cooperative robotics. Compared to the concept of single robot learning, cooperative 
robot learning adds several complications such as a larger search space, the need for 
awareness of other team members, the ability of robots to analyze their behaviors 
with respect to the tasks given to the entire group, and the challenge of inherently 
cooperative tasks. Despite these complications in learning, multi-robot teams have 
significant advantages over a single robot performing a similar task. For example, a 
robot team can distribute actions allowing many robots to be in many different places 
at the same time. This team can also incorporate inherent parallelism in which many 
robots can do many different things simultaneously. Due to the fact that the simpler 
solution is almost always better, multi-robot teams can decompose certain types of 
problems and allocate them to various team members, thus eliminating the need for a 
comprehensive but difficult solution in a single robot.  
   Robot learning is and always will be extremely important to the success of multi-
robot teams. A learning robot is one that can improve its behavior as a result of direct 
interaction with the environment. The ability of a robot to select an efficient behavior 
from a set of potential behaviors and automatically modify its behavior to improve its 
performance is imperative to the goals of the multi-robot teams. A significant long-
term goal is for these robot systems to be able to perform their tasks over a long 
period of time without human interference. Learning makes this goal more of a 
reality. 
   There are two types of robot learning paradigms that are widely used, supervised 
learning and reinforcement learning. In supervised learning, the operator is required 
to define a set of situation-action pairs. In contrast, reinforcement learning generates 
the learning base through a combination of exploration and a reinforcement function. 
Generally, reinforcement learning involves an agent, which is the learner or the 
decision maker, the environment, which is everything that surrounds the agent, and 
the actions, which are the things that the agent can do. In the context of cooperative 
robotics the reinforcement function is designed to measure the performance of the 
whole team of robots and at the same time measure the performance of each 
individual robot. It is for this reason that reinforcement learning is generally the 
choice for application in real world problems.  
   Incorporating learning and adaptation into the field of autonomous robots will not 
only lessen the amount of difficulty in the initial programming, but also allow the 
robots to change their behavior over time as the world around them changes. It is here 
that applications such as CMOMMT are essential because they allow researchers to 
test their theories until a successful multi-applicable approach to robot team learning 
has been developed.  
 
 
 
 
 



CMOMMT Problem Description 
 
The testing domain that we are studying in this problem the Cooperative Multi-Robot 
Observation of Multiple Moving Targets (CMOMMT) is defined as follows: 
 
S: a two-dimensional, bounded, enclosed spatial region 
V: a team of m robot vehicles, ,,...,2,1, miv i =  with 360 degrees field of view 
observation sensors that are noisy and of limited range 
O(t): a set of n targets, ,,...,2,1),( njto j =  such that target )(to j  is located in region S at 
time t. 
 
A robot iv  can be assumed to be observing a target whenever the target is within iv ’s 
sensing range. Define an m x n matrix B(t) as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
That is, the goal of the robots is to maximize the average number of targets in S that 
are being observed by at least one robot throughout the mission that is of length T 
time units. Additionally we define sensor_coverage( iv ) as the region visible to robot 

iv ’s observation sensors, for Vv i ∈ . Then we assume that in general,  
 
 
 
In other words, the maximum area covered by the observation sensors of the robot 
team is much less than the total area that is to be observed. It can then be assumed 
that fixed robot sensing locations or paths will not be adequate and that robots must 
move dynamically as targets appear in order to maintain the target observations and 
to maximize the coverage. 
   This is the basic CMOMMT problem. There are however, an almost infinite number 
of ways to increase the difficulty of this problem. Due to the existent amount of 
possible variations on the dynamic and distributed sensory coverage numerous 
problems are possible. In addition, the relative numbers and speeds of the robots and 
the targets that they are tracking can vary as can the availability of inter-robot 



communication. The robots also have heterogeneous tendencies due to the fact that 
they can differ in their sensing and moving capabilities. These complications are 
what make the CMOMMT application such a rich testing domain in almost all areas 
of cooperative robotics and robot learning. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hand-Generated Approach 
 
A hand-generated solution to the CMOMMT problem has been developed in [15]. 
This solution performs well compared to various control groups that it has been 
compared to. It is called the A-CMOMMT and it has been implemented on both 
physical and simulated robot teams. The hand-generated solution allows the robots to 
use weighted local force vectors that attract them to nearby targets and repel them 
from nearby robots. The weights are computed in real time by a higher level 
reasoning system in each robot, and are based on the relative location of the nearby 
robots and targets. 
   The local force vectors are calculated as follow.  The magnitude of the force vector 
attraction of the robot  lv   relative to target   ko  , denoted   | lkf | for parameters   

 0< 1do <  2do  < 3do  is: 

 
 
 
 
 
 



Where d(a,b) returns the distance between the two robots and /or targets. The 
magnitude of the force vector repulsion of robot  lv  relative to robot  iv  denoted    

| lig |  for parameters  0< 1dr  <  2dr  is: 

 
 
 
 

 

 

 

 

 

 

 

Fig 2: Function defining the magnitude of the force vectors of nearby targets. 

 

 

 

 

 

 

Fig 3: Function defining the magnitude of the force vectors of nearby robots. 

 

In the context of these two functions, the predictive tracking range is the range just 
beyond the sensing capability of the robots, but within which robot trackers should 
continue to adjust their motions if targets are nearby. The first function defines the 
relative magnitude of the attractive forces of a target within the predictive tracking 
range of a given robot. If a robot is too close to the target that it is tracking (distance <   

1do  ) then it is repelled from this target, thus minimizing the occurrence of collisions. 
It is then apparent that the preferred tracking range is between 2do  and 3do  . The 
second function defines the magnitude of the repulsive forces between the robots. 
The robots will strongly repel each other if they are too close together (distance < 1dr ). 



In contrast, if the robots are far enough apart (distance > 2dr ) they will have no effect 
in force vector calculations.   

   Higher-level information can be very important in the improvement of robot team 
performance. Therefore, the hand-generated approach includes higher-level control to 
weight the contributions of each target’s force field on the total computed field. This 
higher-level knowledge is expressed in a weight that reduces robot   attraction to a 
nearby target   if that target is within the field of vision of another robot. This idea 
helps to minimize the opportunities for targets to escape observation by reducing the 
overlap of the sensory areas of the robots. 
   The results of the A-CMOMMT approach can vary depending upon the number of 
robots and targets and the size of the work area. Through numerous simulations and 
physical robot experiments, it has been discovered that this algorithm performs best 
for a ratio of targets to robots greater than 1 to 2. It was also shown that in comparison 
to the local control only, random linear robot movement, and fixed robot positions 
that the A-CMOMMT performs significantly better. 
 
 
Learning the CMOMMT Application 
 
Despite the overall success of the A-CMOMMT approach to this problem, particular 
interest has been taken in improving upon these results with a learning-based 
approach that does not require the assumption of an a priori model. Several 
approaches have been developed with the objective of learning new cooperative 
behaviors and these approaches can be directly applied to the CMOMMT domain. 
One of these approaches, which was developed in [8], combines lazy learning with Q 
learning and a Pessimistic Algorithm that can compute a lower bound on the utility of 
executing an action for each team member. As expected, the challenges in this 
problem include a large search space size, the need for communication or awareness 
of other team members, and attempting to assign credit in an inherently cooperative 
problem. 
 
Lazy Learning and Q-learning 
 
Lazy learning (instance based learning) greatly reduces the time required to build the 
bases that must be defined for each behavior in reinforcement learning. Lazy learning 
delays the usage of gathered information until it is needed. As a result, the same pool 
of information can be used for the synthesis of a variety of different behaviors. In 
relation to reinforcement learning, lazy learning builds a non-explicit model of the 
situation-action relation. It does this by sampling from the situation-action space by a 
random action selection policy, storing these events in memory, and then when 
needed, probing this memory for the best action. Coupling this to a reinforcement 
learning techniques such as Q-learning allows for a large reduction of necessary 
learning time. 
   Q-learning is an extremely useful reinforcement learning algorithm for an agent 
learning an action policy. It is based on the usage of a state-action table containing the 
gain that the agent obtains by executing an action from a specific state. The 
combination of these two learning types is called Lazy Q-learning.  



   In order to express a particular behavior the memory must be probed with the 
reinforcement function. The objective is to provide an approach to predicting the 
rewards for some state action pairs without generating them. The algorithm that 
accomplishes this objective works as follows. First, a situation matcher locates all the 
states within the memory that are within a given distance. Then, if the situation 
matcher has failed to find any nearby situations the action comparator will select an 
action at random. However, if one of these states is located, the action comparator will 
select, after careful examination, the action with the highest expected reward. This 
action is then executed and a new situation results. This requires that new situation-
action pairs be added to the memory and that new Q-values be dynamically 
computed. In this lazy Q-learning the exploration phase is done only once. The 
information collected is then stored and used in future experiments. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4: Lazy learning: the randomly selected situation-action pairs in the lookup table 
are used by the situation matcher to select the action to execute in the current 
situation. The reinforcement function qualifies the actions proposed, helping to select 
the best one. 
 
 
 
The Pessimistic Algorithm 
 
The Pessimistic Algorithm for the selection of the best action to execute for a robot in 
its current local situation is defined as follows: find the lower bounds of the utility 
value associated with the various potential actions that may be conducted in the 
current situation, then choose the action with the greatest utility. In general, a local 
robot situation is an incomplete observation of the state of the entire system. 
Therefore, instead of completing the entire observation in an attempt to solve the 
problem, we simply rank the utility of the actions. If by using a unique instance of 
the memory, we can obtain the utility of the situation, then it is likely that that the 
utility attributed to the local situation is due to the other robots actions. The 
probability of this occurrence decreases in proportion to the number of similar 



situations. By taking the minimum utility value of this set of similar situations then 
there is no implication of losing targets. 
The Pessimistic Algorithm is defined as follows: 

- Let M be the memory, a lookup table of situation-action pairs gathered during 
an exploration phase:  M= [(s(1),a(1)),…,(s(t),a(t)), (s(t+1),a(t+1)),…]. 

- Let sit be the current situation. 
- Find S(sit), the set of n situations of M similar to sit. 
- Let )(sitS follow  be the set of situations that directly follows each situation of 

S(sit). 
- Compute the lower bound (LB) of the utility value (U) associated with each 

situation )()( sitSks follow∈ : 
--LB(s(k)) =min(U(s(m))), for s(m)∈ S(s(k)), the set of situations similar  
to s(k). 

- Execute the action that should take the robot to the new situation s* :    
      s*=max(LB(s)) and )(sitSs follow∈ . 

     
There are numerous ways to calculate the utility U associated with the given situation. 
However, in this application, it can be the exact value of the reinforcement function 
for this particular situation-action pair, which is stored in the lookup table (M) along 
with the number of targets under observation. The value used as a utility if one or 
more targets have been acquired since the previous situation is +1, if one or more 
targets have been lost it is –1, and it is 0 otherwise.  
 
Results of the Learning Approach 
 
 The efficiency of the Pessimistic Algorithm has been compared with the 
performances of the A-CMOMMT, a random action policy, and a user-defined 
non-cooperative policy. It is evident that there is a definite improvement of 
performance in the lazy Q-learning over the random selection policy. This 
simply proves that as a learning type, lazy-Q learning is very important. In 
comparison to the user-defined policy, the Pessimistic Algorithm was also 
more successful. One significant factor that could cause the variation in 
performance is the fact that in Q-learned behavior, there is far less rigidity 
than in the user-defined policy. Basically since the robots in Q-learned 
behavior are not center-of-gravity-oriented, they will exhibit a very erratic 
tracking path, moving however necessary to keep from losing the robot. As a 
result the surface area under observation per unit of time is much larger. 
Despite the lazy Q-learning’s impressive performance in comparison to these 
two approaches, it was nowhere near as successful as the A-CMOMMT 
approach. Pessimistic Lazy Learning cannot even compete due to the fact that 
it does not take into account the location of neighboring robots or their actions. 
Therefore this approach will be revised to allow for the use of information on 
the location of neighboring robots.  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 5: Performance of the Pessimistic lazy Q-learning approach compared to a random 
action selection policy, a user-defined non-cooperative policy, and the hand-
generated solution A-CMOMMT. 
 
 
 
Conclusions and Future Research 
 
Due to the promising future of the Pessimistic Lazy Learning approach to the 
Cooperative Multi-Robot Observation of Multiple Moving Targets, research is 
underway to improve upon the results exhibited in these past experiments. It 
can be concluded that by incorporating a function into the already existing 
learning algorithm that will take into account the locations and actions of the 
other robots that the results should be improved significantly. It is hopeful 
that these results will equalize and maybe even surpass the performance of the 
A-CMOMMT approach. In addition to providing better results, this approach 
will allow researchers to eliminate the assumptions of an a priori model that 
are existent in most of the current approaches to this problem.   
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