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Abstract 

An investigation has been conducted regarding the ability of clustered personal 

computers to improve the performance of executing software simulations for solving 

engineering problems.  The power and utility of personal computers continues to grow 

exponentially through advances in computing capabilities such as newer microprocessors, 

advances in microchip technologies, electronic packaging, and cost effective gigabyte-

size hard drive capacity. Many engineering problems require significant computing 

power. Therefore, the computation has to be done by high-performance computer 

systems that cost millions of dollars and need gigabytes of memory to complete the task.  

Alternately, it is feasible to provide adequate computing in the form of clustered personal 

computers.  This method cuts the cost and size by linking (clustering) personal computers 

together across a network.  Clusters also have the advantage that they can be used as 

stand-alone computers when they are not operating as a parallel computer.  Parallel 

computing software to exploit clusters is available for computer operating systems like 

Unix, Windows NT, or Linux.  This project concentrates on the use of Windows NT, and 

the Parallel Virtual Machine (PVM) system to solve an engineering dynamics problem in 

Fortran.   

Introduction 

There are two parts to the PVM system.  The daemon is a special purpose process 

that runs on behalf of the system to handle all the incoming and outgoing message 

communication.  It is represented by �pvmd3� or �pvmd� and any user with a valid login 
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id can install and execute this on a machine.  The other part of the system is a library of 

routines that enables parallel tasks on the computers to interact. 

 In order to use PVM in the computation of a problem, the problem must be able to 

be broken down into several tasks.  This is known as parallelism, which is done in two 

ways.  One way is �functional� and is accomplished by breaking the application into 

different tasks that perform different functions.  The other way is �data� and this is done 

by having several similar tasks each solve one part of the data.  PVM is a system that can 

be used for one of these methods or a combination of both. 

 C, C++, and Fortran are all languages that can be used to write PVM codes.  This 

project is done using the Fortran language.  Fortran language binders are carried out as 

subroutines instead of functions.  This is because some compilers cannot combine Fortran 

functions with C functions.  Therefore, Fortran applications (programs) have to be linked 

to the PVM Fortran library, the standard PVM library and the C socket library using these 

links libfpvm3.lib, libpvm3.lib, and wsock32.lib. 

 PVM codes are written following two main programming models.  Using the 

master/worker model, the master task creates all other tasks that are designed to work on 

the problem, and then coordinates the sending of initial data to each task, and collects 

results from each task.  However, in the hostless model the initial task spawns off copies 

of itself as tasks and then starts working on its portion of the problem while the created 

tasks immediately begin working on their portion.  Input and output requirements are 

often handled by individual tasks, but it may be beneficial to have some results collected 

by a single task, especially if those results need to be broadcast back out to all the tasks. 
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  In order to execute a program under PVM, the user adds calls to the PVM library 

routines that spawn off tasks to the other machines within the user�s virtual machine and 

allow tasks to send and receive data. 

Method  

The problem to solve was a 3-D spring/mass system.  Utilizing the ideas and 

concepts learned in my dynamics course, we applied the equations for spring force, 

velocity, and displacement such as: 

Force = Kspring(DX) 
 
X = Xo + Vo DT + [a(DT)2]/2  where a = Force/mass 

Therefore, we came up with the equations: 
 

(1) Ftmp = (E0 - E) * Springs( I, J ) 

and 
(2a) Fx(I) = Fx(I) + Ftmp * ( X(I) - X(J) ) / E 
(2b) Fy(I) = Fy(I) + Ftmp * ( Y(I) - Y(J) ) / E 
(2c) Fz(I) = Fz(I) + Ftmp * ( Z(I) - Z(J) ) / E 
 
(2d) Fx(J) = Fx(J) + Ftmp * ( X(J) - X(I) ) / E 
(2e) Fy(J) = Fy(J) + Ftmp * ( Y(J) - Y(I) ) / E 
(2f) Fz(J) = Fz(J) + Ftmp * ( Z(J) - Z(I) ) / E 
 

and 
(3a) X(I) = X(I) + (Vx(I) * DT) + ((Fx(I) * DT**2)/(2 * Mass)) 
(3b) Y(I) = Y(I) + (Vy(I) * DT) + ((Fy(I) * DT**2)/(2 * Mass)) 
(3c) Z(I) = Z(I) + (Vz(I) * DT) + ((Fz(I) * DT**2)/(2 * Mass)) 
 

and 
(4a) Vx(I) = Vx(I) + ( Fx(I) * DT / Mass ) 
(4b) Vy(I) = Vy(I) + ( Fy(I) * DT / Mass ) 
(4c) Vz(I) = Vz(I) + ( Fz(I) * DT / Mass ) 

 
First, using equation (1) the spring force attached to any two masses is calculated 

and then is used to calculate the vector forces of mass 1 (2a-c) and mass 2 (2d-f).  The 
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forces accumulated in equations (2a-c) are then used to update all mass locations (3a-c) 

and velocities (4a-c) in vector form as the system vibrates back and forth in space. No 

boundary conditions are assumed.  Before the velocities are updated (4a-c), they are also 

used in equations (3a-c). DT is the change in time, which is a constant value, as are mass 

and E0 (original extension of spring).  Figure 1 shows a diagram of the program flow. 

Results and Discussion 

Figure 2 shows the performance of the average time in seconds that it took to run 

a sequential version of the program versus a parallel version of the program for the given 

number of masses.  Only a single desktop PC was used and the number of computation 

iterations was set at five hundred.  Each parallel run was set up to have one master task 

and two worker tasks.  The results of the parallel program were poor because when a 

parallel program is run on a single computer, the overhead of running multiple processes 

parallel will always make the �parallel� code run slower than the sequential code.  

Figure 3 shows the results after running the sequential program on a laptop and 

the desktop.  The laptop, which is much slower than the desktop, has a huge effect on the 

performance. 

In order to collect more efficient and correct data, we need to run the parallel code 

in a more balanced parallel environment.  Figure 4 shows the results clustering the PC 

with the laptop to create our parallel environment.  The PC, which obviously has more 

computing power, is slowed down by the laptop when running in parallel. A proper, 

balanced parallel cluster should give the desired results that when given a large and 

complex problem, clustering PCs together will compute much faster than a single 
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computer.  For the current configuration, the imbalance in computing power, plus the cost 

of parallel communication overhead, makes the sequential program faster. 

Conclusion 

 This research has proved that clustering personal computers together can provide 

adequate computing power for large engineering problems.  It has also proved that 

computers within the cluster can be used as stand alone computers because the desktop 

and laptop in this cluster served other purposes such as preparing a paper, this Power 

Point presentation, and a poster presentation.  However, there are several optimizations 

that should be done to this project to improve the parallel performance.  Avoiding 

unnecessary message packing and reducing the message sizes are two approaches that I 

plan to explore in the future upon my potential return to ORNL next summer.  
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Appendix of Figures  
 

Figure 1: 
Program Flow                              
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