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ABSTRACT
Self-referential systems have some remarkable properties.  The processes of life and
mind are not only self-referential, but self-reference turns out to be a crucial
property of both.  However, they are difficult to understand.  From a given starting
point, both endogenous systems (self-referential natural systems) and impredicative
systems (self-referential formal systems) have infinitely many logically consistent
consequences.  Both are incomputable; neither halts after a finite number of steps.
Therefore, neither can produce an exact prediction of the behavior of the other in
finitely many steps.  Despite the fact that all engineering decisions are based on
incomplete information, this inherent inability of an impredicative model to produce
exact predictions of an endogenous system is troubling to some engineers.
Nevertheless, self-reference leads to a more general, but no less rational, form of
modeling than that provided by traditional reductionism.  Although the mathematics
of self-reference is unfamiliar to engineers, its power is dramatic.  For example, it
resolves the apparent paradox of how a brain/mind possessing freewill can operate
in a deterministic Universe.

INTRODUCTION
WHY SHOULD WE CARE?

Engineers seek to develop artificial systems that exhibit behaviors similar to
the cognitive processes observed in biological brains.  This is a worthy goal, and
reaching it will be one of the crowning achievements of 21st Century technology.
By no stretch of the imagination has the goal been reached yet.  Indeed, the
astoundingly simple nervous system of the nematode (all 300 neurons) is
completely mapped out.  Nevertheless, despite years of research, nobody has
been able to devise an algorithm that behaves anything like a nematode
(Chomsky 1993).  Is it really such a stretch to suppose that the reason that the
goal has not been met is that cognitive behavior is beyond the scope of the
traditional reductionistic methods used by engineers?  The answer to this
question is yes, and this leads to another question.  What other rational methods
might we invoke?

IMPREDICATIVE MATHEMATICAL OBJECTS
What is really being said by the remarkably tricky proposition, φ(x) = φ(x)?  It

appears to say nothing and everything simultaneously.  On the one hand, it says
practically nothing.  As a definition of φ(x), it does not inform us how φ(x) differs from
any other entity, such as ψ(x).  This one fact alone seems to illustrate the futility of
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defining an entity by circular reference.  On the other hand, φ(x) = φ(x) states a profound
truth regarding every entity; it is a condensed statement of Aristotle’s Law of Non-
contradiction (Adler 1978).  Translated into words, φ(x) = φ(x) says roughly that a thing
is what it is and does not act contrary to its nature.

This self-referential proposition is a foundation axiom of our system of rational
thinking. It is more than self-referential; it is self-evident.  The Law of Non-contradiction
cannot be validated from any more fundamental proposition.  However, no counter
example has ever been produced to falsify it.  Paradoxically, any effort to logically prove
that it is false starts from the assumption (usually implicit and unacknowledged) that it is
true.  Thus, although φ(x) = φ(x) does not directly inform us how φ(x) differs from ψ(x),
it does provide us with the foundation of a system of logic that may, given proper
additional data, allow us to answer the question.

Mathematicians and scientists prefer to avoid self-referential structures because they
often lead to paradoxes.  A classic logical paradox is “The Liar.”  What are we to make of
the claim, “This statement is false?”  Out of context, it appears to be a flat contradiction.
If we assume it to be true, it asserts a false proposition.  If we assume it to be false, it
asserts a true proposition.  The simplest, and conventionally accepted, way to evade the
dilemma is to exclude all self-referential propositions from the epistemological Universe
of Discourse, and to ignore its distinction from the ontological Universe.

However, such a simple evasion is deeply unsatisfying for several reasons.  First,
our system of logic is based on the self-evident self-referential proposition, φ(x) = φ(x).
Whether we like it or not; disallowing the foundation principle from the Universe of
Discourse hardly appears to be a sound way to begin a logical process of reasoning.
Second, we can use language to discuss “The Liar” and be understood; a system of logic
that simply disallows the admission of such propositions would be far too impoverished
to allow us to use it to reason about language (Barwise and Moss 1996).  Third, a taboo
on self-reference produces a system of logic too impoverished to discuss mathematics.
Although mathematicians are loath to admit it, self-referential, or impredicative,
propositions are both admissible and necessary in mathematics (Kleene 1950).

An impredicative definition is one in which the object being defined participates in
its own definition.  For example, x∈ X, where x is defined in terms of its relationship to
X, is a legitimate definition of the set X.  It is subtly but crucially different from a circular
definition.  As already noted, a completely circular definition provides no feature to
distinguish between the object being defined and the remainder of the Universe of
Discourse.  An impredicative definition must include some constraint (in addition to
identity) on the relationship between an object and itself, and the properties of the
constraint constitute a crucial distinguishing feature of the definition.

Is this sophistry, or are impredicative structures of some practical use?  Consider
that a decade ago, long distance telephone service cost ten cents per minute, but now it is
commonly available for half that price.  How did this come to be?  It happened because
telephone engineers found a practical way to double the carrying capacity a telephone
circuit, with absolutely no loss of information.  They performed this seeming miracle by
discovering a technique called perfect reconstruction wavelet compression.

At the foundation of wavelet compression is the wavelet scaling function.  The
wavelet scaling function, φ(x), is defined by the First Fundamental Wavelet Equation,
φ(x) = 2Σnhnφ(2x-n), where n is an even finite integer.  This proposition is only true for
vectors hn that satisfy certain constraints.  However, for an admissible vector, hn, φ(x) is a
uniquely defined function.  In addition to being unique, it has all sorts of desirable
mathematical properties, including finite support, continuity, differentiability, and
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orthogonality to translates of itself. There is no other way to define it except by the First
Fundamental Wavelet Equation (Akansu and Haddad 1992).  The crucial point is that this
definition of φ(x) is impredicative.

Despite its impredicative definition, the wavelet scaling function is just as logical
than more conventionally defined functions.  Given the definition of φ(x), logical
inferences can be drawn from it, and valid engineering decisions made from those
inferences.  In particular, the Second Fundamental Wavelet Equation can be defined in
terms of the First, namely ψ(x) = 2Σngnφ(2x-n), where gn is the time reversal of the
quadrature reflection of hn.  In addition to having all the desirable properties that the
scaling function, φ(x), has, the wavelet function, ψ(x), has an even more important
property, it is orthogonal to scaled versions of itself.  More importantly for engineers, hn,
gn, and their time reversals, can be proved to be a set of coefficients for a perfect-
reconstruction decimate-by-2 digital filter bank.

The reader may be tempted to think that an impredicative structure is simply a
recursive algorithm.  It is not.  A recursive algorithmic function has a defined bottom;
after a finite number of steps, it hits bottom and the bottom step returns a predefined
symbol to the previous step.  The First Fundamental Wavelet Equation is the definition of
φ(x), but computing the exact value of φ(x) given hn would require an infinite number of
calls to the next finer level of scale.  Since it requires infinitely many steps to complete, it
is not an algorithm (Knuth 1973).  Infinite recursion depth is typical of impredicative
processes; they are non-algorithmic and incomputable.  These differ fundamentally from
recursive algorithms, which have a defined bottom level of recursion.

The reader may also be tempted to think that an impredicative structure is simply an
analog feedback system, or perhaps the differential equation describing such a system.  It
is not this either.  The crucial distinction is that the impredicative object is defined in
terms of its relationship to itself between levels.  To appreciate the notion of level,
imagine the model of a model of a system.  An impredicative model is defined in terms of
its relationship with a model of the model.  For example, a wavelet scaling function
(itself a model of some other system) on a given scale is the weighted sum of copies of
translates of the same function at the next finer scale (a model of the original model).  In
contrast, for an analog feedback mechanism, the self-reference is within the natural
system, and if modeled by a differential equation, the feedback imposes no need to look
at a model of the model.  The feedback is within a level.

The key points of this digression into impredicativity are as follows.  Logic is
founded on self-reference or impredicativity.  The cost of self-reference is the risk that it
can lead to paradoxes.  A blanket taboo against self-reference in order to avoid paradoxes
is too restrictive.  An epistemological Universe of Discourse that disallows self-reference
is too impoverished to allow meaningful discussion of the ontological Universe, where
self-referential structures (e.g. semantic languages) abound.  In fact, an epistemological
Universe of Discourse that disallows self-reference is too impoverished even to allow
meaningful discussion of other useful epistemologies, such as engineering mathematics.
Impredicativity has infinite recursion depth, and is not an algorithm.  It requires self-
reference between levels, and fundamentally differs from a feedback mechanism.  Most
crucially, for readers of this paper, engineers can use impredicative mathematics to guide
their decisions just as reasonably as we use more traditional mathematics.
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ENDOGENOUS PHYSICAL PROCESSES
In the natural world, a multi-level self-referential process is called an endogenous

system.  This is a widely used medical term that describes the property of a system that
grows from within itself, or makes itself up as it goes along (Clayman 1989).  The term is
used for a similar concept in economics (Gavin and Kydland 1999).  Some biologists
consider this property to be a defining feature of living systems.  For example, Margulis
and Sagan (1995) flatly claim that a system is alive if and only if it is autopoietic.  They
identify autopoiesis as the process of life making itself.

Endogeny in the form of autopoiesis was first propounded by Maturana and Varela
(1998).  They begin by noting that attempting to define life by listing properties leads to
the various dead ends.  They offer what they call a radically different perspective, that a
living process is distinguished from a non-living process by its organization.  They
identify organization as the relations that must be present for a thing to exist.  What
distinguishes living from non-living processes is autopoietic organization.

The autopoietic object is a bounded unity.  It has a dynamic network of chemical
transformations commonly called a metabolism.  Metabolism is distinguished from other
chemical networks in that metabolism produces the components that make up the
network of metabolism.  An integral component of the metabolic network is a membrane
that serves as the boundary between the network and the rest of the world.

The membrane and the metabolic dynamics are each necessary for the existence of
the other. The metabolic transformations will only occur if the system is protected from
the environment by the membrane.  The membrane is a product of the metabolic
transformations.  The emergence of the membrane and the rest of the metabolic network
is not sequential.  They are two different aspects of a single unity, as indicated in Fig. 1.
Disrupt either, and you disrupt the whole.  Maturana and Varela say that what is most
striking about an autopoietic system is that it pulls itself up by its own bootstraps.  It
produces and repairs its own material structure.  It becomes distinct from its environment
through its own dynamics.  It does so in a way that the metabolism and repair processes
are inseparable.  They identify autonomy as a system’s ability to make up its own laws of
behavior, and update them as it goes along.

Fig. 1. Unity of Metabolism and Membrane

From direct observation, Wolpert argues that life is incomputable (Murphy and
O’Neill 1995).  He argues that life behaves like neither a differential equation nor a finite
state machine.  Differential equations exclude structure from their initial conditions, but
that both cells and embryos are highly structured.  However, a finite state machine, or a
computable cellular automaton, is simply a discretized form of a differential equation.  A
formal description of a living process must be something altogether different.

Dynamics
(metabolism)

Boundary
(membrane)
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CONGRUENCY:  FORMAL AND NATURAL SELF-REFERENTIAL SYSTEMS
The incomputability of endogenous natural systems has some serious consequences

for engineers.  Attempting to project them onto an algorithm automatically discards much
of the information about the process.  Even worse than that, the algorithm offers no
warning as to how much is lost, or where its predictions will fail.

Since endogenous natural systems are incomputable, how are engineers to deal with
them?  The answer is to model the endogenous natural system with an impredicative
formal system.  What does this mean?  A mathematical formalism of the Modeling
Relation has existed for nearly a century, and may go back even further (Russell 1931).
In mathematical biology the formalism has been popularized by Rosen (1991, p. 152),
who tells us that modeling “is the art of bringing entailment structures into congruence.”
By itself, the statement leaves us little wiser than when we started.  How does art enter
into the discussion; are we not instead supposed to be scientific?  What is an entailment,
much less an entailment structure?  What does it mean that two different entailment
structures are congruent?  In what sense are they not identical?  If they are not identical,
what causes us to declare them congruent?  Why do these questions matter?

The first point to appreciate is that the Modeling Relation (see Fig. 2) is a formal
mathematical relation (Rosen, 1999).  Suppose that A and B are sets, and that there exists
a set, R, of ordered pairs, where the first element of each pair in R is an element of A, and
the second element of each pair in R is an element of B.  There is also some ordering in
the pairs, but there is not strict ordering.  In mathematical notation: a∈ A, b∈ B,
(a,b)∈ R<=>aRb.  In the Modeling Relation, the members a and b of each ordered pair in
R are entailments from two different systems.

Entailments are the event structures in the organization of a system.  There are two
sorts of systems that might appear in the Modeling Relation, natural systems and formal
systems.  Natural systems are systems in physical reality that have causal linkages; if
certain causative events impinge upon a natural system, then the system will behave in a
certain way, or produce certain events in effect.  This consequential linkage of cause and
effect in a natural system is a causal entailment.  Formal systems are conceptual systems
that have inferential linkages; if certain hypothetical propositions impinge upon a formal
system, then they will produce certain consequential propositions in conclusion.  This
linkage of hypothesis and conclusion in a formal system is an inferential entailment.

Entailment structures are inherent within a system; they are the distinguishing
features that characterize the system (Rosen, 1991, p. 98).  They do not cross over from
one system to another.  This is represented in Fig. 2, where we see a natural system, N,
distinguished by its structure of causal entailments, a, and a formal system, F,
distinguished by its structure of inferential entailments, b.  The entailment structures of
two distinct systems are distinct from one another; causes or hypotheses in one do not
produce effects or conclusions in the other.  In fact, this provides the answer to one of the
questions posed above.  Its self-contained entailment structure is what provides identity
to a system and distinguishes it from other systems.  This is important in living systems,
since one of the distinguishing features is a living system is the unique identity of its
bounded self.

The fact that distinct systems are non-identical does not preclude them from being
regarded as being in some sense similar.  Similar systems should have distinguishing
features that closely correspond to each other.  Dissimilar systems should have
distinguishing features that do not closely correspond to each other.  As already noted,
the distinguishing feature of a system is its entailment structure.  Thus, we would expect



6

similar systems to have entailment structures in which there is some degree of
correspondence between the entailments.

Fig. 2.The Modeling Relation

To establish this correspondence, consider a system of encodings and decodings
(Rosen 1991, p. 59).  For example, we might have a system of encodings that encodes a
set of events in the natural system, N, in Fig. 2, into a set of propositions in the formal
system, F.  We might also have a system of decodings that decodes a set of propositions
in the formal system, F, into a set of phenomena in the natural system, N.  Although the
two systems remain independent in the sense that causes or hypotheses in one do not
produce effects or conclusions in the other, the two systems can be linked by encodings
and decodings.

This linkage between entailment structures provides the means of determining the
similarity between two systems. Suppose that an event, e1, in N can be encoded to a
proposition, p1, in F; we can think of the encoding arrow, c, in Fig. 2 as a measurement
on a natural system. Suppose further that the proposition, p1, when applied as a
hypothesis in the inferential structure in F entails another proposition, p2, in F as a
conclusion. In other words, the propositions are entailed as an implication, b = (p1 →
p2), in F. Suppose that this entailed proposition, p2, in F can be decoded into an event,
e2, in N; we can think of the decoding arrow, d, in Fig. 2 as a prediction by a formal
system.

Rosen defines congruency between the entailment structures as follows (Rosen,
1991, p. 61).  Suppose that in the underlying reality, the event e1 in N causes event e2 in
N.  In other words, the two events are entailed as a causal linkage, a = (e1 → e2), in N.
Suppose further that the linkages commute.  Event e1 is encoded by c to proposition p1,
i.e., c = (e1 → p1), which, implies (in formal system, F) proposition p2, i.e., b = (p1 →
p2).  Proposition p2 is decoded by d to event e2, i.e., d = (p2 → e2).  Further suppose that
there is an exact correspondence between the predicted event e2, and the caused event e2.
The commutation is also described as a = b+c+d.  (Note: + is the symbol for
concatenation.)  If there exists no such entailment c in F, having a commutative
relationship with some entailment a in N, then the two systems do not have congruent
entailment structures.  Entailment structures are congruent to the extent that such
correspondences between entailments exist.

c

d

a b
Natural
System (N)

Formal
System (F)

c

d

a b
Natural
System (N)

Formal
System (F)

MR = {(a,b) | a = c + b + d}
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CONCLUSIONS
BIZARRE BEHAVIOR IS SOMEWHAT PREDICTABLE

The idea that a behavior or effect is completely unanticipated, but fully consistent
with the causal entailments of the system producing the effect is bizarre.  Previously,
borrowing Kirstie Bellman’s idea, I had styled systems that exhibit such behavior to be
bizarre systems.  However, it is clear that the bizarreness is in the effect, not in the cause.
Since the most compact set of distinguishing features of any system is its causal
entailment structure, and not the caused behavior, it is less confusing to say that a system
with a multi-level self-referential causal entailment structure is an endogenous system
that produces bizarre effects, that are predicted (often, but not always) by an
impredicative model with a multi-level self-referential inferential entailment structure.

In describing the systems that produce bizarre effects, we need to recall that they
come in two distinct flavors, natural (ontological) and formal (epistemological).  In the
Modeling Relation, the two are never identical.  Since much of the confusion in 20th
century science arose from not noticing this distinction between ontology and
epistemology, it would be wise, as we lay the foundations for a new century of thinking,
to adopt terminology that never lets us forget the distinction.

Finally, how do we manipulate an impredicative model to make decisions about an
endogenous system? Since the processes are incomputable, an algorithm is useless for the
task.  There are several strategies that have not yet been proved impossible, the super-
Turing model, quantum computing, and wiring the human directly into the loop
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