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ABSTRACT 

 
It was recently proposed (by Dombeck et al) to search for a Neutron Electric Dipole Moment (EDM) by means of the neutron 
multiple Bragg back-scattering. The dynamical diffraction analysis of the proposed experiment is the subject of this paper. 
The neutron wave modes were calculated for the case of the infinitely long slot cut inside of a thick Si crystal parallel to the 
crystallographic planes and placed in a steady magnetic field. The calculated neutron modes have a dis crete spectrum of a 
momenta along the direction of the slot axis.  The external magnetic field causes some particular discrete modes to become 
degenerate. However, the Schwinger and EDM interactions of neutrons with the slot walls break this degeneracy, which in 
turn leads to the complicated  motion of the neutron polarization vector along the slot axis. The spin deviation from the 
starting direction is accumulated during neutron motion in slot. The energy spectrum of neutrons transmitted through the slot 
contains several peaks instead of one existing for the case of the ultra back-scattering regime.  
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1. INTRODUCTION 
 

During recent years then has been increased interest in the research on devices which utilize multiply Bragg diffraction from 
perfect single crystals. Successful experiments concerning neutron storage, that is confinement of the thermal neutrons 
between two back reflected, ?B=p/2 perfect silicon single crystals is an example [1]. The problem here is one in which the 
neutron is moving horizontally between these back reflecting vertical silicon mirrors and is confined by means of the neutron 
guide walls.  Finkelstein [2,3] observed the Spin-orbit (Schwinger) interaction between the neutron spin and crystalline 
electric field in a silicon single crystal placed in the external magnetic field. This magnetic field led to the degeneracy of the 
neutron states belonging to the different spin orientations and simultaneously to the different branches of the neutron 
dispersion surface in silicon.  These degenerate states are very sensitive with respect to small perturbations. This 
circumstance allowed the observation of the Schwinger interaction, which is usually 4 orders smaller than the nuclear 
interaction between the neutron and silicon lattice [2]. The condition for the above mentioned degeneracy is written in the 
very simple form for the case of Laue diffraction, 

(1)                                                                                                                                        2π=
θ
τω

Bcosv
Z   

where ? Z, v  is neutron Zeeman frequency and velocity, respectively. ?B is the Bragg angle and t is an extinction length. The 
relatively strong homogeneous magnetic field was used in this experiment, H=6279.3 Gauss [2]. 

Recently Dombeck et al [4] proposed to use  the multiply Bragg Back Scattering (BS) from the slot cut in the single 
crystal for the Neutron Electric Dipole Moment (EDM) search.  The neutron spin is disturbed by EDM or Schwinger 
interactions in the slot wall and rotates at the angle p during the transit from one slot side to the another, so that the effect of 
perturbation is accumulating during multiply, ~104 reflections from the slot walls. Dombeck et al [4] used the simple 
geometrical optics approach in order to make necessary estimates.  

The dynamical diffraction analysis of the proposed experiment [4] is the subject of this paper. The neutron wave 
modes are calculated for the case of the infinitely long slot cut inside of a thick Si crystal parallel to the (111) or (220) 
crystallographic planes.  We call such a crystal placed in the steady homogeneous magnetic field a Wave Guidance-
Resonator (WGR). The calculated neutron modes have a discrete spectrum of the momenta, Q, in the direction of the slot 
axis.  The external magnetic field causes some particular discrete modes to become degenerate. However, the Schwinger and 
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EDM interactions of neutrons with the WGR walls break this degeneracy, which in turn leads to the complicated motion of 
the neutron polarization vector along the WGR axis. Calculations were carried out for the two cases: a) the conventional BS; 
b) Ultra-Back Scattering (UBS), 2? B˜ p. The energy resolution, ?E, of conventional BS spectrometers is limited by the value 
of ?E~?k0v, even in the UBS regime (?k0 is the gap between the branches of the neutron dispersion surface and v is the 
neutron velocity). However the value of Q is discrete for the WGR regime, which leads to the appearance of several narrow 
peaks in the energy spectrum of neutrons transmitted along the slot.  

The general formulation of model ( the neutron WGR placed in the magnetic field) is done in the part 2 of this 
paper. We calculate discrete neutron modes and the condition of their degeneracy.  The cumbersome calculations of the 
effects of small EDM are presented in the part 3. The Schwinger interaction effect is described in  part 4. In  part 5 we show 
how our results can be reformulated for the case of Ultra Back Scattering regime, 2? B˜ p. The brief discussion of the results is 
done in the Conclusion. 
 

2. NEUTRON WAVE GUIDANCE RESONATOR MODEL 
 

We consider the neutron de Broglie wave propagation in a slot cut in a Si single crystal and along X-axis (see Figure 1). The 
Y-axis is perpendicular to the slot surface and collinear to the scattering vector G. The Z-axis is perpendicular to the plane of 
scattering. The neutron WGR is placed in a external homogenous magnetic field H. Here we first do not  take into account 
weak EDM and Schwinger interactions This  will be done in part 3. Therefore, the doubled spin projection, a at the direction 
of H is conserved and we can limit ourselves by the ordinary two waves approximation of the dynamic scattering theory [4,5]  
The neutron wave function is a superposition of the incident (0) and diffracted (h)  parts , 
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? 0(a), ? h(a) can be find by means of dynamical diffraction theory equations:  
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here  m is the neutron mass, ?Z is neutron Zeeman frequency in the external magnetic field H, V0, VG and V-G are Fourier 
components of the interaction between neutron and Si crystal lattice. The gap ?k0 between the branches of the neutron 
dispersion surfaces in the bulk silicon and the extinction length t can be written in the standard form 

  

(4)                                                                                     2   2 00
2

0 k/),cosk/(Vmk BG ∆π=τθ=∆ h  

 
The equations (3) can be transformed to the convenient dimensionless form after the substitutions   
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The solution of (6) can be written in the form 
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where Q, P are the components of the neutron quasi momentum parallel and perpendicular to the slot surface, respectively. 
We are interested in the case of the multiple Bragg scattering, so that the neutron cannott penetrate deeply inside the bulk 
silicon crystal. Therefore we limit ourselves by the solution of  (6) corresponding to the case of the neutron total reflection 
from the slot walls, that is 0<?<p. The relation (8) can be considered as boundary condition at the slot wall at y=rD/2, where 
D is slot width.  
Scattering is absent inside the slot and the corresponding wave function, taking into account (5b), can be found from the 
equations 
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which have very simple solutions 
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F0, Fh are the components of the wave function at the slot center, y=0. The value of quasi momentum, Q directed along slot 
axis, is the same inside the slot and the slot walls. The neutron wave function should be continuous at the slot sides. These 
boundary conditions lead to the relations 
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Equation  (11) have a solution if  
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The expressions (12) demonstrate that the neutron de Broglie wave has a discrete quasi momentum spectrum Q directed 
along slot axis. The quasi momentum spectrum is continuous for the case of ordinary Bragg reflection from the one perfect 
crystal surface. The wave function corresponding to the discrete modes  is especially simple inside the slot, 
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Two modes with opposite spin orientation will be described by the same values of Q, if two solutions of (12) are given by the 
relation 

(14)                                                                                                                      2-  -     αδ=ξξ α−α coscos  

This degeneracy can be achieved by means of changing the value of the external magnetic field and leads to higher sensitivity 
to the EDM and Schwinger interactions in the slot walls. The parameter V0/|VG| is equals to 1 and 21/2 for the case of Si(220) 
and Si(111) reflection, respectively. The dimensionless slot thickness, as a rule, is large, D>>1. The number of the discrete 
neutron modes, M 

(15)                                                                                                                                 2                   π≈ /DM   
For an example, for the case of Si(440) reflection and ?=1.9174 ? , the value of ?B, t*tan? B/p are equal to  87.13° and 25.6 
µm, respectively. Therefore for the case of slot width equal to 1 mm the number of neutron modes M=24. 
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3. EDM EFFECTS 
 

  3.1.  Neutron reflection from one side of the slot. 
 
 A neutron passing near an atomic nucleus will experience a change in kinetic energy, -?V, due to the EDM interaction with 
an electric field existing inside of crystal. 

(16)                                                                                                                            -V EDM ES •µ=∆  
 where µEDM, S  is the neutron EDM and spin, respectively, and E is an electric field existing inside of crystal, E~7.6x108 
V/cm. Only one Fourier component  ?V(G), corresponding to the scattering vector G, is important in our case. The 
corresponding electric field is collinear to the vector G,  ?V(G) can be written in the form 
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where Ze is the nuclear charge reduced by the electron screening factor  (1-f(G)),  f(G) is  X-ray form-factor, and e0 is the 
dielectric constant [4,7]. It is necessary to emphasize that value of  ?V(G)  is imaginary and is odd for the respect of vector 
G. The value of EDM is very small, µEDM <1.2x10-25

 e-cm  [4]. Therefore is it important that the result of discussed 
experiment will not be “contaminated” by the more stronger effect induced by the Schwinger interaction between the neutron 
spin and the electric field, which is proportional to the value of [S·E]. We  suppose that the external magnetic field is directed 
along Z- axis (Figure 1). The effect of Schwinger interaction will be suppressed in this case. The dynamical theory equations 
are written in the form 
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where ? 0, ? h are two-components spinors.  
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We have equations  for the calculation of components ? 0,h(a)exp(iQx+iPy), corresponding to the projection a of the neutron 
spin along the magnetic field direction:  
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The EDM interaction creates only the very small corrections, ~A2, to the eigenvalues, P in Eq. (20).  The neutron wave 
function corrections are small, ~A, and are calculated by means of perturbation theory. The neutron cannot penetrate deeply 
inside silicon crystal, so that we have the simple expressions for the neutron wave function ?(a,r)with the a of neutron spin 
projection along the direction of the magnetic field and  near slot side y=rD/2 
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The first and second rows in (21) correspond to the incident (0) and diffracted (h) wave function components, respectively, 
but with the same spin projection ¦ a>.; the third and fourth rows describe the similar components but with opposite, ¦ -a>, 
spin projection. 
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The physical meaning of Eq. (21) can be understood if we consider neutron reflection from the slot side y=rD/2  (r=±1) and 
with the incident neutron polarization ¦ ß>. The neutron wave function  is  
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The amplitude and polarization of the reflected beam at the same slot side, y=rD/2, are expressed as 
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Therefore a neutron EDM induces the small (and expected) component of neutron polarization <s X> which is parallel to the 
slot axis, that is perpendicular to the crystalline electric field and the external magnetic field, H. 
However, an EDM induces also small neutron polarization <s Y> which is parallel to the crystalline electric field and 
perpendicular to H. What is the source of <s Y>?0? The ordinary spin dynamic leads to the spin motion perpendicular to H 
and E. It is supposed in this case that the effect of spin motion is not important for neutron coordinate motion. However, in 
our case neutron spin transition ¦ ß>? ¦ -ß> changes the position of the neutron tie point inside the Darwin plateau (total 
reflection range), that is,  the phase of the component of the wave function which is compose to the reflected beam. This last 
circumstance leads to the appearance of the neutron polarization component, which is parallel to the crystalline electric field 
and perpendicular to the slot surface. We can omit the effect of <s Y>?0 if the absorption (emission) of the Zeeman energy 
leads to the small effect in the tie point position within the total reflection range, that is |d|<<1, |?a-?-a |<<1. 
 
3.2. EDM effects in the neutron wave guidance resonator. 
 
Theses calculations are similar to the described in point 2. However we take into account the neutron spin rotation induced by 
the EDM interaction in the slot walls. Let us suppose that F0(a), Fh(a) are the components of the neutron wave function at the 
slot center, y=0. This wave function is written in the form at the slot side y=rD/2: 
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The neutron wave function should be continuous at the slot sides and ? S(r) can be also written as linear superposition of 
|? (a,r)>  
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The numerical parameters c(a,r) were determined by means of comparison (24a) and (24b), so that we have  4 equations 
which contained only amplitudes F0(a), Fh(a). 
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It is convenient to introduce symmetrical and asymmetrical combination of amplitudes   F0(a), Fh(a) 
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Equations (27) are separated into  two pairs of the equations for  F+(1), F-(-1) and F+(-1),  F-(1). The corresponded 
determinant,  
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The neutron EDM induces transition between states a=1 and a=-1 when the momentum Q directed along slot axis is the same 
for state a=1 and a=-1, 
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We see that the neutron EDM leads to the suppression of the degeneracy of the wave guidance resonator modes which have 
different  “parity” La  and L-a  . The corresponding splitting ??a  ~ A/D for the case of the exact mode degeneracy, ?d=0. What 
is the source of the parameter 1/D in ? ?a? The number of neutron reflections from slot sides is  equal to the value x/D, where 
x is the length of neutron path along slot axis. Therefore we find that the splitting ??a  ~ A/D. The neutron wave function can 
be found after substitution of (33) into the expressions (27)-(31). 
Let us consider, for an example the case of the exact degeneracy, ?d=0 and L1=2M1, L-1=2M-1+1, M1, M-1=1,2,…We have 
from the expressions (27)-(31) 
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where C(r?) are the arbitrary constants (we omitted very small terms ~ ??aD).  
Let us suppose that the incident neutron is completely polarized along the direction of the external magnetic field at the point 
x=0, y=D/2. We calculated the values of  C(r?),? 0 (35) and the average value of neutron polarization at the same slot surface 
y=D/2 taking into account this condition. We find 
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We see that the direction of neutron spin can be strongly changed at the large distance, x ~QD/A, along the slot axis. The 
neutron spin rotates in the plane parallel to the slot surface when ?1

0˜  ?-1
0. 

 
4. SCHWINGER  INTERACTION EFFECTS 

 
The Neutron Spin-Orbit (Schwinger) interaction can be written in the form [2,3] 
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where F - structural factor, b - length of scattering, µ - neutron magnetic moment, f(G) -  X-ray form factor. The other 
symbols are standard [3]. The physical sense of the Schwinger interaction is simple: crystalline electric field E leads to the 
existence of the induced magnetic field h~[E•v]/c in the neutron coordinate system ( v, c are the neutron and light speed, 
respectively) and the additional energy –µs h. The magnetic field h is collinear to the Z-axis in our case. 
We suppose that external magnetic field is parallel to the Y-axis, that is collinear to the vector of scattering. Neutron  
dynamic eq-s are expressed as  
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It's well known that the following transformation  doesn't change the Pauli operators relationships. 
(39)                                                                                                                 XZ σ→σσ→σσ→σ ,, ZYYX

The substitution (39) transforms   (38) to the equations (19), but   only the value of B is used instead of A Eq. (18).  
Therefore results for the case of Schwinger interaction will have the same form as for the case of EDM interaction if we take 
into account (39) and replace A? B. 
 

5. ULTRA BACK-SCATTERING REGIME 
 

It is supposed above that the Bragg angle isn't too close to the value of π/2, so that the ordinary two waves dynamical theory 

is applicable. Here we describe calculations for the case of ultra back- scattering regime when the Bragg angle ?B=p/2. .  
The neutron wave function could be written as 
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where ? lE  is deviation from the exact Bragg condition. The equations of motion are written in a dimensionless form (44) 
after transformations (43) 
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Here the gap, ?k0 between the dispersion surface branches doesn’t contain the value of cos?B (comp. with the expression (4)) 
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The solution of (44) is proportional to exp(iQx+iPy). It is convenient to use substitution 
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(45)                                                                             1   rsinr)P(   2 ±=ϕ=αϕ=∆−αδ− αα r,i,,cosEQ  

 
The total reflection regime will exist when 

(46)                                                                                                                                 1 2 <∆−αδ− EQ  

Without Schwinger and EDM interactions the neutron modes are defined by the equation  (47) , which is similar to (12) but 
with the different value of the momentum Q  directed along slot surface. 

(47)                                                                       2 1L     0 ...,,,L)V/V(cosD, GLLL =π=−ϕ−ϕϕ=ϕα  

Two modes with opposite spin orientation will be degenerate if 
(48)                                                                                                                    2-  -     αδ=ϕϕ α−α coscos  

 EDM interaction removes this degeneracy and changes the value of Q at the value q  

(49)                                                                                             
2Q
1

2Q
1

β−β−ββ ϕ∆ϕ−=ϕ∆ϕ−= sinsinq  

Splitting ∆f ß is defined by the same expression as  in Eq. (33) but with the substitution f a , f -a  instead of ?a , ?-a , respectively. 
 

6. CONCLUSION 
 

It was shown above the neutron wave-guidance resonator modes are discrete. It is interesting to compare Eq. (12) with the 
simple geometrical optics approximation for the case of thick slot, D>>1. Let us suppose that we have wave field Ψ0 (0) at the 
slot mid. This wave will be completely reflected at the wall y=D/2, spreading up to y=-D/2, reflected once more and returns 
to the slot mid plane as wave  

(50)                                                                  021 000   )V/V(cosD  C),()C(-iexp)( Gww ξ−−ξ=Ψ=Ψ
We will have after N cycles 

(51)                                                                                                         02 00       )()NC(-iexp(N)? w Ψ=  

The number of cycles, N could be very large for the case of the long slot. Therefore, the neutron wave field will be 
completely chaotic if conditions (12), (29) will not be fulfilled.  Let us suppose that we have starting Gaussian wave packet 
“around” ? = ?L (12) and value of ? = ?L+d?, d?~1/D. We have the deviation of Cw 

( )2501 δζζ−δζ+ζ−≈δ LLw cosD.)sinD(C  

This Gaussian packet will be transformed to the highly oscillatory wave function after 2N>>1 reflections; N~D if value of ?L 
isn’t close to the p/2, that is to the center of the Darwin reflection plateau. The value of N~D2 if value of ?L ˜ p/2. 
We find that the neutron EDM interaction with crystalline electric field removes discrete neutron modes degeneracy and 
induces beating of the neutron polarization (36) as function of coordinate along slot axis. For the case of ?0

1˜  ?0
-1 this motion 

is the spin rotation in the plane parallel to the slot surface. The component of the spin motion along Y-axis is added when 
?0

1? ?0
-1.  This unusual spin motion along the crystalline electric field can be understood as the result of coupling between 

spin and neutron coordinate dynamic in silicon. The neutron spin transition ¦ ß>? ¦ -ß> changes the position of neutron tie 
point inside the Darwin plateau, that is the phase of the component of the wave function which is corresponded to the 
reflected beam. This circumstance leads to the appearance of the neutron polarization component, which is parallel to the 
crystalline field. 
Unfortunately, it is very difficult to observe these beating effects due to the extremely small value of the neutron EDM. 
Therefore we limit ourselves by the discussion of the regime, ?<<1, that is, the  initial part of these beating effects   

(52)                                                            
ctg?2D
X

N   , 
2

sin 
2QD

AX
2 

   4
2

 
2QD

AX
2 

Bl

l
0

1
0
1

0
1

0
1l

0
1

0
1

0
1

0
1l

=
ξ−ξξ+ξ

>≈σ<

ξ−ξξ+ξ
>≈σ<

−−

−−

)()cos(

,AN~)cos()cos(

Y

X

 

where 2N is number on neutron reflections along the path through the slot, and  Xl, Dl are the slot length and width, 
respectively, which are written in the dimension form. We see that the deviations, <s X>, <s Y> of the neutron polarization is 
increasing along slot axis [2,3]. This accumulation of deviations exists due to the mode degeneracy in the magnetic field and 
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was predicted by Dombeck et al. [3]. The value of A is equal to 1.6x10-7 if we suppose that <s X>=0.01 and N=30000. This 
value of A is corresponded to the value of neutron EDM, µEDM=4x10-24e-cm in the crystalline electric field 7.6x108V/cm.  
In most cases the value of slot thickness is large, D>>1 (15). Let's calculate resonance magnetic field δ0 for the case D>>1  
and near the center of Darwin plateau. By means of simple substitutions (53) 
 

(53)    /2   0-(n-Dcos   1,0   1,~n   integers, -n M,   ,ML   0 π≈ζ=νπ+ζζ<ν<+→ν+=
π

,)n,M
V

DV

G

 
we find decision (32,53) as an expansion over 1/D 
 

(54)                                                                                        
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2

)n(U,
D
U

D
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D
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D
cos ν−π=+

π
−−

π
≈ζ

 

(55)                                                                                                                          20 )D/()LL( α−α −π≈δ
 
Neutron time of flight from one slot side to another is approximately equal to the one half of the neutron spin Larmor 
procession period multiplied by the odd integer number (55). Only in this case the effect of neutron spin rotation by EDM 
interaction in slot walls is accumulated during the neutron trip along the slot axis.  
The interval δQ between nearest “allowed” values of Q is equal to ~π/D (54). This value δQ corresponds to the distance  
Dl ctgθB along slot axis , that is , to the step length in the classical picture of neutron reflections from slot walls. The value of 
cosζ is almost linear over n. Therefore not only pair of modes with definite parameters La  , L-a  will be important in the 
neutron spin deviations, but also the other pairs of modes with the same value La- L-a. These additional pairs could increase 
<σX> deviation for the  case of multi mode neutron resonator, D>>1 and decreasing  <σY> due to the asymmetry <σY>  for 
the respect of transformation ?1

0?  ?-1
0 .   

As was mentioned above the  calculation for the case of the Schwinger interaction is similar to the one for the case of EDM 
effect. The deviation of the neutron polarization is increasing along slot axis [2,3]. However parameter ? Eq. (36) for the case 
of the Schwinger interaction 

(56)                                                                                                              
D
x

sin?2bV
CF

D
Bx

??
l

l

BG

l
S

−

=≈=

and  the small value cos?B is absent in the denominator (comp. with (52)). It can be understood if we take into account that 
the average magnetic field h induced by the crystalline electric field, <h>~<[E•v]> ~ cos?B and number of reflection ~1/ 
cos?B. The value of polarization directed along slot axis <s X>~2?S~10-3Xl/Dl    for the case of  Si(440) reflection, ?B˜80º ,VG 
˜5.4*10-8eV, C̃ 10-10eV,  and the external magnetic field is collinear to the Y-axis. It therefore seems that experiments can be 
successful. 
 Let us discuss some peculiarities of the neutron resonator parameters in the Ultra Back Scattering (UBS) regime. It is well 
known that UBS rocking curve is much wider than the ordinary rocking curve in the perfect crystal. For the case of Si (111) 
reflection, ?=6.27Å, ?B˜ p, t=34µm and sides of the Darwin plateau are corresponded to the Q=±1 or to the  angular position 
±v?/t=±14.8 arc min. The energy window, corresponded to the completely reflected neutrons, ?E0˜18.7 MHz. 
Let us consider the energy spectrum of neutrons transmitted through slot resonator in the UBS regime. The allowed neutron 
modes are defined by the equation (45). Their contribution in spectrum is defined by the parameters of excitation at the 
beginning of slot resonator. Let us suppose, for the simplicity, that all allowed modes are excited with the same probability. 
The normalized spectrum of the transmitted neutrons are shown at the Figure 2 for the case of slot thickness D=10, that is 
108µm, and collimation Q<0.35, that is the deviation from the exact Bragg condition isn’t more than 5.18 arc min. The 
spectrum is contained 7 peaks. The interval between nearest peaks is equal to 2.8 MHz. Probably, the selective excitation of 
these modes can be achieved by means of a crystal  monochromator with the FWHM of the mosaic disorientation ~1-2 arc 
min. 
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Figure 1. . Neutron Wave Guidance – Resonator. 1- neutron trajectory inside slot cut in the perfect Si single crystal. G – scattering vector. 
H1, H2 – the external magnetic field for the case of EDM and Schwinger interaction studies, respectively. 
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Figure 2. Energy spectrum of neutrons transmitted through slot resonator. Ultra  back scattering regime. Si(111). Slot thickness D=10, 
beam collimation Q= 0.35 The value of ?E=1 is corresponded to the frequency 9.35 MHz. The energy “window” is spreading from ?E =–1 
to ?E=1 for the case of the “ordinary” UBS crystal analyzer.  
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