
NetLets:
Measurement-Based Routing for End-to-End Performance over the Internet

Nageswara S. V. Rao
Computer Science and Mathematics Division

Oak Ridge National Laboratory, Oak Ridge, TN 37831

Sridhar Radhakrishnan
School of Computer Science

University of Oklahoma, Norman, Oklahoma 73019, USA

Bang-Young Choel
Electronics and Telecommunication Research Institute

Taejon 305-350, Korea

International Conference on Networking

July 9-13, 2001

Colmar, France

Research Sponsored by: DARPA/ITO; DOE Office of Science; ORNL LDRD

Outline of Presentation

• Present-day Networks - Need for QoS

• NetLets: Basic Concepts

• Analytical Model and Performance Guarantees

• Internet Implementation Results

Present-Day Internet

Very little Quality of Service (QoS) Guarantees:

- Internet packets are routed according to best-effort mechanism

- All packets are the same - control packet from PC to a waiting teraflop machine

- Once packet is sent, very little can be done about how it is sent

QoS is Needed Now:

- Large distributed simulations

- Data transfers to and from high performance machines

- Control of sensors and robots over networks

State and configuration of network must be exploited to achieve best performance

What type of QoS is Desired:

1. End-to-end guarantees on delay, jitter, etc., for various types of messages

2. Must be provided in a transparent manner to the application programmer

NetLets: Basic Idea

Application
Currently, no control once data reaches the network

data packets

Application NetLets

Network

Network

Use configuration
and state of network

data packets data packets

NetLet Packets

Distributed Computing Over IP Networks

At Present:

- process-to-process communication is

achieved as peer-to-peer mechanism

- parallelism in network is not taken advantage of

e.g. congestion on a link is not bypassed

NetLets Offer Natural Solution:
Increase flow in less congested routes
- Use processes to assist in networking

NetLets for Distributed Processes

Foundations for NetLets

Process-process communication is handled

through Netlets that

- estimate link statistics (non-linear
estimators)

- compute “best” paths

Provide probabilistic end-to-end guarantees

- distribution-free under stationarity conditions

- detailed probabilistic models are not needed:

measurements are often sufficient

Summary: Distributed Computing over IP

• Showed measurements are sufficient to provide end-to-end
delay guarantees in fairly general network models

– No need for extensive modeling

• Derived probabilistic end-to-end delay guarantees for very
general classes of networks

• Implemented explicit multiple paths over Internet

• Achieved concrete and significant reductions in end-to-end
delays

NetLets became possible as a result of unique combination of

statistical estimation, graph and flow algorithms, and network engineering

Finite-sample
statistics

Flow and graph
algorithms

Anatomy of NetLets

Network
Engineering

NetLet Daemons:
Implemented on top of TCP/IP stack

Measurement Path and traffic
implementation

Network

Use measurements to estimate delay regressions

to provide end-to-end minimization

State Estimation Path computing and
traffic profiling

Performance Guarantees: End-to-End delay
Method: Regression based on delay measurements, followed by
path computation

Given only measurements of sufficient (finite) size

Performance guarantee:

irrespective of the joint delay distributions

Analysis helped implementation:

1. Appropriate measurements and their optimization

2. Performance savings are real

Informally, end-to-end delay of computed path is within
specified tolerance of optimal with a specified probability

{ }*ˆ(,) (,)R RP T P R T P R ε δ − > < 

Network Measurements

• TCP/IP end-to-end delivery times vs message size

ORNL, 6010

UC Riverside

U Oklahoma

LSU

U TennORNL - LAN
Old Dom. U

Network Measurements

• TCP/IP end-to-end delivery times vs message size

• 26 sets collected every hour – no temporal periodicity

ORNL

Old Dominion Uni.

Routing Problem

Random Formulation

Optimal Paths

Regression-Based Paths: computational Complexity
() [|]v v vq r E Q R r= =

Delay regression estimator:

Delay regression:

ˆvq

Routing Algorithm: Single Path

G(a): network with each edge bandwidth at least a

Algorithm min_path(r)

1. for each bandwidth b_j, j=1,2, …, c

compute shortest path P_j in G(b_j)

2. compute k=j to minimize {g(r,b(P_j))+d(P_j)+q (P_j,r)}

3. Return P_k path with minimum delay

Time complexity: 2(log ())O m mn n nf l+ +
m
n
()f l

Number of edges

Number of nodes
Regression cost on l data points

Regression-Based Paths: Sample Complexity

{ }*ˆ ˆ() (,) sup () ()
2R R v v

v V

P T P T P R n P q R q R
n

ε
ε

∈

  − > < − >    

{ }*ˆ ˆ() (,) sup () ()
2R R R R v v

v V

P E T P T P R n P E q R q R
n

ε
ε

∈

  − > < − >    

Deviation of delay of computed path from that of optimal
is related to that of regression estimator to

Delay regression:

In summary, we need regression estimator with

1. Performance guarantee and

2. Low computational cost

() [|]v v vq r E Q R r= =

R̂P *
RP

ˆvq vq

Regression-Estimation: Empirical Risk Minimization

Choose a class of estimators: vΘ

Expected risk

Empirical risk

2
,() (())

vv v v Q RI q Q q R dP= −∫

2
; ;

1

1ˆ() (()
l

v v i v v i
i

I q Q q R
l =

= −∑

vq ∈ΘFor

Basic Result:

2

ˆˆ () () sup () ()
2 2v v

R v v v v
q

P E q R q R P I q I q
n

ε ε
∈Θ

   − > ≤ − >   
    

Performance Guarantees: Monotone Regression

Each is a non-decreasing functionvq

vΘ Class of non-decreasing functions

{ }*ˆ() (,)R RP T P T P R ε δ − > < 

2 4 2

4 2

512 16 144
4ln ln

n n nτ τ
ε ε δ

    +    
   

Sample size (distribution-free):

Performance guarantee:

Performance Guarantees: Vector Space Method

vΘ Vector space of dimension d

vqEach is a member of vector space of dimension d

2 4 2 2

4 2 2

8192 512 512 8
ln ln ln

n e n e n n
d

τ τ τ
ε ε ε δ

     +     
     

Sample size (distribution-free):

Performance guarantee:

{ }*ˆ() (,)R RP T P T P R ε δ − > < 

Computation cost f(l) is polynomial in l;

Examples: polynomials, potential functions, Kurkova’s networks

Internet Measurements: Small messages

Objective:

End-to-end delay minimization for ORNL-OU

Solution:

Two-paths via NetLets:

ORNL-OU, ORNL-ODU_OU

Destination

U. Oklahoma

ORNL: source

Old Dominion Uni.

Internet Connection

ORNL: source
Destination

U. Oklahoma

Improvements:

25% reduction in end-to-end delays on
average

- hourly measurements over a week

#msgs

End-to-end delay (sec)

Internet Measurements: Large Messages (8M)

Objective:

End-to-end delay minimization for ORNL-OU

Solution:

Two-paths via NetLets:

ORNL-OU, ORNL-ODU_OU

Destination

U. Oklahoma

ORNL: source

Old Dominion Uni.

Internet Connection

ORNL: source
Destination

U. Oklahoma

Improvements:

Average reduction of 20%

- hourly measurements for
one week

Internet Measurements: Large Message (1.6M)

Objective:

End-to-end delay minimization for ORNL-OU

Solution:

Four streams via NetLets:
Two parallel streams ORNL-OU

ORNL-ODU-OU, ORNL-LSU-OU

Destination

U. Oklahoma

ORNL: source

Internet Connection

ORNL: source
Destination

U. Oklahoma

Improvements:

Average 40% reduction in end-to-end
delays

- hourly measurements for a week

LSU

ODU

End-to-end delay (sec)

Msg size

Conclusions
• NetLets new thinking for end-to-end network performance

– Measurement-based – in-situ specialized daemons

– First Internet implementation of explicit multiple paths with concrete improvements

– No support from Internet routers

• Unique Combination - statistics, algorithms, network
engineering

– NetLets are made possible by a unique synergy

– Provide distribution-free performance guarantees

• Netlets are Upward Compatible and Complementary
– Route specification at remote routers – simple router daemons

– Diffserv, MPLS – QoS within classes and shit traffic between classes

– Active Networks – more customization is possible

• Future work
– Extensive testing

– Host-base optimization

