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Abstract

In recent years, microstructure evolution in metals during deformation processing has
been modeled at the mesoscale by combining the finite element method to discretize the
individual grains with crystal plasticity to provide the constitutive relations. This approach
allows the simulations to capture the heterogeneous nature of grain deformations due
to interactions with neighboring grains. The application of this approach to study the
deformations of columnar grains present in solidification microstructures is described. The
microstructures are deformed in simple compression, assuming the easy growth direction of
the columnar grains to be parallel to the compression axis in one case, and perpendicular
in the other. These deformations are similar to those experienced by the columnar zones of
a large cast billet when processed by upsetting and drawing, respectively. The simulations
show that there is a significant influence of the initial microstructure orientation relative
to the loading axis on the resulting changes in grain shape and orientation.

The submitted manuscript has been authored by a
contractor of the U.S. Government under contract
No. DE-AC05-000R22725. Accordingly, the U.S.
Government retains a nonexclusive, royalty-free li-
cense to publish or reproduce the published form
of this contribution, or allow others to do so, for
U.S. Government purposes.



Introduction

The use of the finite element method for modeling the deformation of metal polycrystals
at the mesoscale has become more widespread with recent advances in computational
capabilities [1-3]. Since these models make use of crystal plasticity for characterizing
the anisotropic constitutive response of the material, they are capable of modeling the
effects of interactions between the different grains at the microstructural length scale.
By discretizing the individual grains with many elements, these simulations also capture
variations in the deformation within each grain. This approach has also been coupled
with a Monte Carlo recrystallization model to study the evolution of the deformation
substructure during subsequent annealing [4,5].

The objective of the work presented in this paper is to apply the mesoscale deformation
model to microstructures with columnar grains, which are typical in metals after solidi-
fication. The microstructures are deformed in simple compression, with the easy growth
direction of the columnar grains aligned with the compression axis in one case (similar to
upsetting), and perpendicular to the compression axis in another case (similar to drawing).
The differences in the evolution of the microstructure and texture for the two cases are
characterized using the mesoscale modeling technique.

Since microstructures with columnar grains have the same configuration of grains for any
section along the easy growth direction, it could be considered unnecessary to discretize
the microstructure along that direction, and limit the finite element model to a single
plane. This issue was examined by simulating the compression of the microstructure using
3-d and 2-d discretizations. It was found that the inhomogeneity in the deformation along
the easy growth direction can be quite significant, leading to different results from 3-d and
2-d simulations.

Crystal Plasticity Model

Crystal plasticity is used as the basis for modeling the constitutive response of the columnar
grains. Elastic strains are neglected, and deformation is assumed to occur by slip dom-
inated plastic flow of the material. A simple power-law relationship is assumed between
the resolved shear stress 7(® and the rate of shear 4(* on each slip system [6]
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where m is the rate sensitivity parameter, and *, is a reference rate of shearing. The
increase in resistance to continued plastic deformation due to interactions among disloca-
tions is approximated through the evolution of the critical resolved shear stress 7. The
resolved shear stress is the projection of the crystal deviatoric Cauchy stress o/, on the
slip plane and along the slip direction, and is obtained using the Schmid tensor (dyadic
product of the slip direction s(*) and the slip plane normal n(®) vectors) as,
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Here P is the symmetric portion of the Schmid tensor T(®) and can be used to express
the crystal rate of deformation D, as a linear combination of the slip systems shear rates,
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Eliminating 4(®) between equations (1) and (3), and substituting equation (2) for 7(*)
provides an expression for the crystal deformation rate,
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which can be inverted due to the rate dependent assumption in equation (1). For a given
rate of deformation, equation (4) must be solved iteratively to obtain the crystal stress.
The solution for the crystal stress also provides the slip system shear rates, which are
then used to update the crystal orientation. The rate of rotation R* is controlled by the
difference between the crystal spin W, (given by the skew-symmetric part of the crystal
velocity gradient) and the plastic spin associated with the slip system shears,
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where Q@ is the skew-symmetric part of the Schmid tensor T . Material work hardening
is modeled by prescribing the evolution of the critical resolved shear stress,
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where hardening rate Hy and initial hardness 7; are material parameters. ¥* is a measure
of the net shearing rate on all the slip systems (3, |¥(®|). The saturation hardness 7,
based on the current slip system state is given by
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where 7, 95 and m' are material parameters.
Finite Element Formulation

The finite element formulation used in the present study is described in greater detail by
Sarma et al [1] and is based on the hybrid formulation used by Beaudoin et al [7]. The
crystal plasticity model outlined above provides the constitutive framework for the mate-
rial response. Balance laws for equilibrium and conservation of mass are used to set up the
system of equations for the boundary value problem. Under the hybrid formulation, the
equilibrium statement is written as a balance of tractions at the inter-element boundaries.
Weighted residuals are formed on the equilibrium statement and the constitutive relation.
A third residual on the conservation of mass (which for the case of incompressible plastic
deformation reduces to a divergence-free velocity field) completes the formulation. Inter-
polation functions are introduced for the nodal velocities, element stress components and
the pressure. A proper choice of the shape functions for the stress permits elimination of
the stress degrees of freedom at the element level.

The deformation of the microstructure is simulated in incremental fashion, assuming the
geometry and material state (crystal orientation and slip system critical resolved shear
stress) to be fixed during the plastic strain increment. The resulting system of equations
is solved until a converged velocity field is obtained. The material state is then evolved
using equations (5) and (6) and the geometry is advanced using a simple Euler update.

Due to the non-linear nature of the crystal constitutive response, which must be developed



at each iterative step in the velocity solution, the formulation using the crystal plasticity
model becomes computationally demanding. Use of the hybrid approach leads to intro-
duction of additional degrees of freedom for the crystal stresses, thereby adding to the
computational burden associated with the stiffness calculations. The advantage of using
this approach is the smoothness in the stress field, due to the enforcement of traction bal-
ance at the element interfaces in an approximate sense [7]. In the finite element context, the
numerical integration required for computing the stiffness matrix can be performed simul-
taneously for all elements. The choice of piecewise discontinuous interpolation functions
for the stress is a key feature of the formulation, which enables computation of the stiffness
matrices in a concurrent fashion for all elements. This feature in turn lends itself to ex-
ploitation of parallel computing tools to enable simulations using large three-dimensional
discretizations.

While the stiffness computations are relatively straightforward to implement on a parallel
architecture, the solution of the resulting system of equations poses a bigger challenge.
Since direct solvers are difficult to optimize on a parallel machine, it is advantageous
to use an iterative procedure, such as the conjugate gradient method. In this context,
enforcing the incompressibility constraint requires special attention, since it degrades the
numerical condition of the resulting system of equations. In the current formulation,
incompressibility is enforced using a modified consistent penalty approach, which seeks
to decouple the solution for the pressure field from the conjugate gradient method [8].
The formulation has been implemented for execution on massively parallel supercomputers
using the Message Passing Interface (MPI) [9] to handle the communication of data among
Processors.

Application to Columnar Microstructures

The formulation described in the previous section has been used to simulate the deforma-
tion of microstructures containing columnar grains. These microstructures were generated
by taking a planar section from the result of a 3-d Monte Carlo grain growth simula-
tion [10], and repeating the section along its normal direction to build up the columnar
grains. The microstructures were discretized using one element for each grid point, result-
ing in a mesh with 40 eight-node brick elements along each side of a cube. The material
was assumed to have fcc crystal structure, deforming on {111}(110) slip systems. Material
parameters were taken from literature [11], based on fitting the crystal plasticity model
to mechanical test data for aluminum, and are listed in Table I. Even though columnar
microstructures are not produced during industrial processing of aluminum due to the ad-
dition of grain refiners, these parameters were chosen for convenience, and the simulations
can be easily extended to metals like nickel and Ni-based alloys that do produce columnar
grains in large ingots. The microstructures were deformed in simple compression, with

Table I. Material parameters used in the deformation simulations.

m | A [s7'] | Hy [MPa] | 7; [MPa] | 750 [MPa] | 4, [s7] m/
0.05 1.0 58.41 2717 61.80 5.0x100 | 0.005

compression normal the +7 axis, and equal amounts of extension along the +X and +Y
axes. The other three sides of the mesh were constrained to have zero normal velocity.
The normal velocity components of the surface nodes were prescribed such that a nominal
unit compressive strain rate was maintained during deformation. A compressive strain
increment of 1% was applied during each step, and the deformation was carried out to
50% reduction in height. Two types of columnar microstructures were considered, the first
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Figure 3: (100) pole figures in equal area projection showing the initial and deformed
textures for the microstructure with columnar grains aligned with the compression axis.

When the grain orientation is such that the [001] direction is perfectly aligned with the
compression axis, the crystal plasticity model predicts that a material with fcc crystal
structure is able to deform in simple compression with no change in its orientation. This
is because of equal shear rates on the complementary slip systems, which cancels out
the rotation rate. This has been verified through a calculation using the Taylor mean
field hypothesis [13] for grains whose orientations are given by rotations about the [001]
direction.

In order to study the effect of the finite element discretization on the deformation of the
columnar grains, the same microstructure was also discretized using a mesh with 40x40
eight-node brick elements, which is only one layer thick in the Z-direction. Simulation of
simple compression to a strain of 0.7 was carried out similar to the 3-d case, and it was
found that all the elements deform uniformly, with no indication of shear in the elements
(Figure 2). A plot of the texture showed that the pole figure is identical to that obtained
from the initial texture. This result indicates that the reason for small deviations from
uniform deformation in the 3-d simulations is the variation from the nominal deformation
rate through the thickness of the domain in the compression direction. For the 2-d case, all
the nodes are surface nodes, and even though the in-plane velocities of the nodes away from
the edges are unconstrained, the simulation proceeds with no deviations from the applied
velocity conditions. For the 3-d case, the discretization along the compression direction
causes the velocity to develop small deviations from a uniform variation from the top to
bottom surface. In turn, this causes the orientations of some elements to evolve differently
from their neighbors, thus introducing a slight spread about the initial orientations.

In an effort to further explore the difference between 2-d and 3-d discretizations of columnar
microstructures, simulations of the microstructures with columnar grains aligned with the
compression axis were repeated, but this time using a different set of initial orientations.
These orientations were generated by adding a random perturbation of £5° to each of
the three Euler angles from the previous case. Therefore, the initial orientations were not
just rotations about the [001] direction, but had an additional small random deviation.
The deformed microstructures from the 3-d and 2-d simulations are shown in Figure 4.
It is evident that the introduction of small deviations in the initial orientations leads to
greater inhomogeneity in the deformation. The 3-d case shows considerable shear in the
elements (compare with Figure 2), and the 2-d mesh also shows non-uniform deformation.
The resulting textures are shown in Figures 5 and 6, respectively, for the 3-d and 2-d
simulations, with significant differences in the pole figures after deformation.
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Figure 7: Deformed microstructure with columnar grains perpendicular to the compression
axis.
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Figure 8: (100) pole figures in equal area projection showing the initial and deformed
textures for the microstructure with columnar grains perpendicular to the compression
axis.

The simulation technique described above has also been applied to the case with the colum-
nar grains perpendicular to the compression axis. The same section used in the previous
simulations was now repeated along the X-direction to generate the initial microstructure.
The finite element mesh was generated as before using 40 elements along each side, as seen
in Figure 1. The initial grain orientations were generated by taking random rotations about
the [100] direction. The resulting microstructure after compression to 50% reduction in
height (true strain of 0.7) is shown in Figure 7. Unlike the earlier case, the deformation of
each grain is no longer uniform, and there is considerable shear in certain elements. Most
of the elements rotate about the [100] direction by various angles, so that the resulting
texture (Figure 8) shows a more or less uniform distribution about this direction.

As in the previous case for grains aligned with the compression axis, the introduction of
some random spread in the initial grain orientations leads to greater inhomogeneity in the
deformed microstructures. The microstructure after compression to a true strain of 0.7 is
shown in Figure 9. In addition to the greater shearing evident in the section normal to
the X-axis, there is also greater inhomogeneity along the grain columnar direction. The
(100) pole figures in Figure 10 showing the initial and deformed textures also indicate the
influence of the initial spread in the orientations. While the tendency of the grains to
rotate about the [100] direction is still present, there is also greater spread in the other
directions, with lower peak intensities compared to the previous case.
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Figure 9: Deformed microstructure with columnar grains perpendicular to the compression
axis with random perturbations in the initial orientations.
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Figure 10: (100) pole figures from the 3-d simulation showing the initial and deformed
textures for columnar grains perpendicular to the compression axis with random pertur-
bations in the initial orientations.

Conclusions

Mesoscale simulations of the deformation of microstructures with columnar grains have
been carried out using the finite element method, in conjunction with a crystal plasticity
model for characterizing the constitutive behavior. Discretization of the individual grains
allowed the simulations to capture the non-uniform deformation of the microstructure due
to interactions among the different grains. The simulations showed that the microstructure
and texture evolution during simple compression depends on the alignment of the easy
growth direction of the columnar grains with the compression axis. This has implications
for the upsetting and drawing of billets obtained after casting, since the arrangement of
the columnar grains relative to the direction of loading would play a significant role in the
resulting microstructure.

A comparison of three-dimensional and planar meshes for simulating the compression
of columnar grains showed that the 2-d mesh is unable to capture certain variations in
deformation along the grain axis. These variations are greater when the orientations of
the columnar grains are not limited to rotations about the easy growth direction, but have
additional deviations. The results therefore illustrate the importance of using a three-
dimensional discretization in order to better model the inhomogeneous deformations of
polycrystal at the mesoscale.
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