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Abstract

This paper considers the camera-space position and orientation regulation problem for the
camera-in-hand problem via visual servoing in the presence of parametric uncertainty associated
with the robot dynamics and the camera system. Specifically, an adaptive robot controller is
developed that forces the end-effector of a robot manipulator to move such that the position and
orientation of an object are regulated to a desired position and orientation in the camera-space,
despite parametric uncertainty throughout the entire robot-camera system. An extension is also
provided that illustrates how slight modifications can be made to the camera-in-hand control law
to achieve adaptive position and orientation tracking of the end effector in the camera-space
for a fixed-camera configuration. Simulation results are provided to illustrate the performance
of the adaptive, camera-in-hand controller.

1 Introduction
To achieve high performance control of a robotic system, it is generally accepted that sensor-based
control is required. If the robot is operating in an unstructured environment, an interesting ap-
proach is to utilize a vision system for obtaining the position information required by the controller.
Hence, the vision system can be used for both on-line trajectory planning and feedforward/feedback
control (i.e., visual servoing). In addition, there seems to be a consensus that to extract high-level
performance from vision-based robotic systems, the control system must incorporate information
about the dynamics/kinematics of the robot and the calibration parameters of the camera system1.
As stated in [7], few vision-based controllers have been proposed that take into account the non-
linear robot dynamics. That is, many of the previously developed controllers are designed under
that assumption that the robot is a perfect positioning device with negligible dynamics, and hence,
reduce the problem to that of kinematic control based on camera observations (e.g., [5]). One of
the first vision-based control designs which incorporated the robot dynamics can be found in [15];
∗This research was performed in part by a Eugene P. Wigner Fellow and staff member at the Oak Ridge National

Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725
and is supported in part by the U.S. NSF Grants DMI-9457967, DMI-9813213, EPS-9630167, ONR Grant N00014-
99-1-0589, a DOC Grant, and an ARO Automotive Center Grant.

1The camera calibration parameters are composed of the so-called intrinsic parameters (i.e., image center, focal
length, and camera magnification factor) and extrinsic parameters (i.e., camera position and orientation).
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however, the vision system was modeled as a simple rotation transformation. More recently in [1],
Bishop et. al. emphasized the importance of adequate calibration of the vision system with respect
to the robot and the environment. As noted in [1], while a variety of techniques have been proposed
for off-line camera calibration, only a few approaches were aimed at the more interesting problem
of on-line calibration under closed-loop control. An overview of the state-of-the-art in robot visual
servoing can be found in [4, 16].
Recently, some attention has been given to the design of vision-based controllers that guaran-

tee the convergence of the position error. Specifically, Kelly and Marquez [9] considered a more
representative model of the camera-robot system (in comparison to the approach of [15]) to design
a setpoint controller for the fixed-camera problem that compensated for unknown intrinsic camera
parameters but required perfect knowledge of the camera orientation. In [7], Kelly redesigned the
setpoint controller of [9] to also take into account uncertainties associated with the camera orienta-
tion and produce a local asymptotic stability result; however, the result given in [7] required exact
knowledge of the robot gravitational term and that the difference between the estimated and actual
camera orientation was restricted to the interval (−90◦, 90◦). In [10], Kelly et al. utilized a compos-
ite velocity inner loop, image-based outer loop fixed-camera position tracking controller to obtain a
local asymptotic stability result; however, exact model knowledge of the robot dynamics and a cali-
brated camera are required, and the difference between the estimated and actual camera orientation
is restricted to the interval (−90◦, 90◦). In [8], Kelly et al. extended the transpose Jacobian control
philosophy given in [19] to develop a position regulation controller for the camera-in-hand prob-
lem, provided exact knowledge of the gravity of the robot gravitational term is available. In [14],
Maruyama and Fujita proposed position setpoint controllers for the camera-in-hand configuration;
however, the proposed controllers required exact knowledge of the camera orientation and assumed
the camera scaling factors to be the same value for both directions. In [1], Bishop and Spong de-
veloped an inverse dynamics-type, position tracking control scheme (i.e., exact model knowledge of
the mechanical dynamics) with an on-line adaptive camera calibration control loop that guaranteed
asymptotic position tracking; however, convergence of the position tracking error required that the
desired position trajectory be persistently exciting. Recently, in [20], Zergeroglu et al. designed
an adaptive position tracking controller for a fixed-camera configuration that accounted for para-
metric uncertainty throughout the entire robot-camera system provided the camera orientation is
restricted to the interval (−90◦, 90◦). Moreover, in [21], Zergeroglu et al. proposed i) a uniformly
ultimately bounded (UUB) position tracking controller that rejects uncertainty throughout the en-
tire robot-camera system for a fixed-camera configuration, and ii) a UUB regulating controller for
a camera-in-hand configuration provided the camera orientation is within a certain range.
In this paper, we extend the work given in [3], [20], and [21] to develop an adaptive position

and orientation regulation controller for the camera-in-hand configuration. Specifically, despite
parametric uncertainty in the robot manipulator and the camera system, we force the end-effector
to move such that the position and orientation of an object in the camera-space is regulated to a
desired position and orientation. An extension is also provided that illustrates how the proposed
control strategy can also be utilized to obtain asymptotic position and orientation tracking of
the end-effector in the camera-space for the fixed-camera problem. With respect to much of the
research presented in literature, the proposed adaptive robot controller has the following advantages:
i) parametric uncertainty throughout the entire robot/camera system is confronted, and ii) the
position and the orientation of an object are regulated. An additional advantage of the controller
proposed in the fixed-camera extension is that the more general position and orientation tracking
problem is solved.
The paper is organized in the following manner. Section 2 describes the robot manipulator-
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camera systemmodel while the control objective, open-loop error system, control design, and closed-
loop error system are given in Section 3. A Lyapunov-based stability analysis is provided in Section
4. A position and orientation tracking extension is presented in Section 5 for the fixed-camera
problem. Simulation results illustrating the performance of the control law are given in Section 6
and concluding remarks are presented in Section 7.

2 Model Development

2.1 Kinematic Model

To obtain the kinematic equations that relate the task-space end-effector position of a rigid three-
link, revolute, planar robot manipulator to the joint displacements, we define a set of task-space
variables x1(t), x2(t) ∈ R1, an open set S1 ⊂ R2, and a function Ω ∈ C2 (S1) where Ω : S1 → R2,
such that £

x1(t) x2(t)
¤T
= Ω(q1, q2) (1)

where q1(t), q2(t) ∈ R1 represent the displacements of the first two joints (See Figure 1). After
taking the time derivative of (1), we obtain the following expression£

ẋ1(t) ẋ2(t)
¤T
= J

£
q̇1(t) q̇2(t)

¤T
(2)

where the Jacobian matrix J(q1, q2) ∈ R2×2 is defined as

J(q1, q2) =

·
∂Ω(q1, q2)

∂q1

∂Ω(q1, q2)

∂q2

¸
(3)

where we assume that J ∈ C1 (S1). We can also relate the end-effector orientation, denoted by
θ(t) ∈ R1, to the joint displacements as shown in the following expression

θ = q1 + q2 + q3 (4)

where q3(t) ∈ R1 represents the displacement of the third joint. After taking the time derivative of
(4) and combining the resulting expression with (2), we obtain the following expression

ẋ = JS q̇ (5)

where q̇(t) represents the time derivative of q(t) =
£
q1(t) q2(t) q3(t)

¤T ∈ <3, ẋ(t) represents the
time derivative of x(t) =

£
x1(t) x2(t) θ(t)

¤T ∈ R3, and JS(q) ∈ R3×3 is defined as follows
JS =

·
J 02×1
11×2 1

¸
, (6)

where J(q1, q2) was defined in (3), and the notation ξn×m signifies that ξ is a n×m matrix.

Remark 1 In the previous development, we have assumed that the third link of the manipulator
has no length (i.e., the third link does not affect the position of the end-effector, only the orientation
of the end-effector) to simplify the control development and stability analysis. Based on the results
of this paper, one could easily extend the control design to solve the camera-space position and
orientation regulation problem for a rigid three link manipulator, where each link has some length.
In Section 5, we propose an adaptive tracking controller for the fixed-camera problem using a rigid,
three-link manipulator where each link has some length.

Remark 2 During the subsequent control development, we assume that J−1(q) always exists and
all kinematic singularities are always avoided.
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Figure 1: Three Link Robot Manipulator

2.2 Task-Space to Camera-Space Transformations

To develop a relationship between the task-space position and orientation of an object and the
camera-space position and orientation, we utilize the so-called pin-hole lens model [1] for the robot-
camera system that is modified to reflect the properties of the camera-in-hand problem [14] as
shown below ·

y1
y2

¸
= BR(θ)

µ·
x1
x2

¸
−
·
xd1
xd2

¸¶
(7)

where y(t) =
£
y1(t) y2(t)

¤ ∈ R2 represents the position of the object in the camera-space, x1(t),
x2(t) ∈ R1 represent the position of the end-effector in the task-space, B ∈ R2×2 is a constant
matrix defined as follows

B = AR(θ0) (8)

A ∈ R2×2 is a diagonal, positive-definite, constant matrix defined as follows

A =

·
α1 0
0 α2

¸
(9)

R(·) ∈ R2×2 is a rotation matrix operator defined as

R(·) =
·
cos (·) sin (·)
− sin (·) cos (·)

¸
(10)

xd =
£
xd1 xd2

¤T ∈ R2 represents the constant, desired task-space position of the object, α1,
α2 ∈ R1 are positive constants defined as

α1 = β1
λ

z
α2 = β2

λ

z
, (11)

z ∈ R1 represents the constant distance of the camera’s optical center to the task-space plane,
λ ∈ R1 is a constant representing the camera’s focal length, the positive constants denoted by β1,
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β2 ∈ R1 represent the camera’s constant scale factors (in pixels/m) along their respective Cartesian
directions, and θ0 ∈ R1 represents the unknown, constant counterclockwise rotation angle of the
camera. To relate the task-space orientation of the object to the camera-space orientation, we utilize
the following relationship (see Appendix A for details regarding the development of the following
expression)

tan θy =
α2
α1
tan (θd − (θ0 + θ)) , θT (12)

where θT ∈ R1 is a measurable auxiliary camera-space signal, θd ∈ R1 represents the constant
desired orientation of the object in the task-space, θy(t) ∈ R1 represents the orientation of the
object in the camera-space, and θ(t) was defined in (4).

Remark 3 In a similar manner as in [21], we assume that the camera is mounted such that: i) its
image plane is parallel to the plane of the object, ii) the camera system can determine the position
of an object by locating a feature (e.g., a light emitting diode), iii) the camera can determine the
orientation of the object by recognizing at least one additional feature (e.g., a second light emitting
diode, etc.), iv) the camera can capture images of the object throughout the entire robot workspace,
and v) the effects of image capturing and processing delays are negligible (this assumption is reason-
able since advancements in computer and high-speed camera technology provide vision systems with
the capability to capture frames, process the data, and compute the controller within a millisecond).
Moreover, we assume that θd, given in (12), is selected selected so that the following inequality is
satisfied

|θT (0)| < 90 [deg]. (13)

2.3 Joint-Space to Camera-Space Transformations

To relate the joint-space signals to the camera-space signals, we first take the time derivative of
the expressions given in (7) and (12) and then perform some algebraic manipulation to obtain the
following expressions·

ẏ1
ẏ2

¸
= BJ2R(θ)

µ·
x1
x2

¸
−
·
xd1
xd2

¸¶
θ̇ +BR(θ)J

·
q̇1
q̇2

¸
θ̇T = −γθ̇

(14)

where J2 ∈ R2×2 is a skew-symmetric matrix defined as follows

J2 =

·
0 1
−1 0

¸
(15)

and γ(q) ∈ R1 is a positive scalar function defined as

γ =

¡
1+ θ2T

¢
α1
α2
cos2 (θd − (θ0 + θ)) +

α2
α1
sin2 (θd − (θ0 + θ))

(16)

After utilizing (7) and (14), we obtain the following transformation between the joint-space and the
camera-space

Ẏ = TCq̇ q̇ = C−1T−1Ẏ (17)
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where Y (t) ∈ R3 is defined as
Y (t) =

£
yT (t) θT (t)

¤T
(18)

and T (q, y), C(q) ∈ R3×3 are global invertible transformations defined as

T =

·
B BJ2B

−1y
01×2 −γ

¸
(19)

and

C =

·
R(θ)J 02×1
11×2 1

¸
(20)

respectively, where B ∈ R2×2 was defined in (8), γ(q) was defined in (16), J(q) was defined in
(2), and R(·) was defined in (10). Note that the inverse of C is guaranteed to exist based on the
assumption that the inverse of the Jacobian matrix J(q) exists (see Remark 2). Furthermore, the
inverse of T (q, y) can be written in the following form

T−1 =

 D 02×1

H −1

γ

T (21)

where D ∈ R2×2 and H ∈ R1×2 are defined as follows

D ,
·
d1 d2
d3 d4

¸
=

 cos θ0
α1

sin θ0
α1

−sin θ0
α2

cos θ0
α2

 (22)

H =
α21 cos

2 (θd − (θ0 + θ)) + α22 sin
2 (θd − (θ0 + θ))¡

1+ θ2T
¢
α22α

2
1

·
α2y1 sin θ0 + α1y2 cos θ0
−α2y1 cos θ0 + α1y2 sin θ0

¸T
. (23)

2.4 Dynamic Model

The joint-space dynamic model for a rigid three-link, revolute, planar robot manipulator is assumed
to have the following form [18]

M(q)q̈ + Vm(q, q̇)q̇ +G(q) + F (q̇) = τ (24)

where q(t), q̇(t), q̈(t) ∈ R3 denote the link position, velocity, and acceleration vectors, respectively,
M(q) ∈ R3×3 represents the inertia matrix, Vm(q, q̇) ∈ R3×3 represents the centripetal-Coriolis
matrix, G(q) ∈ R3 represents the gravity effects, F (q̇)∈ R3 represents the friction effects, and τ (t) ∈
R3 is the torque input vector. To facilitate the subsequent control design and stability analysis, we
transform the dynamic model into a form that is consistent with the camera-space transformations
given by (14) and (17). Specifically, we premultiply (24) by the product T−T (q, y)C−T (q) and then
substitute (17) into (24) for q̇(t) to obtain the following expression

M∗(q, Y )Ÿ + V ∗m(q, q̇, Y, Ẏ )Ẏ +G
∗(q, Y ) + F ∗(q, q̇, Y ) = T−T τ ∗ (25)

where
M∗(q, Y ) = T−TC−TM(q)C−1T−1

V ∗m(q, q̇, Y, Ẏ ) = T−TC−T
³
M(q)

³
C−1Ṫ−1 + Ċ−1T−1

´
+ Vm(q, q̇)C

−1T−1
´

G∗(q, Y ) = T−TC−TG(q)
F ∗(q, q̇, Y ) = T−TC−TF (q̇)

τ ∗(q, t) = C−T τ ,

(26)
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and the notation
.

(·)−1 signifies the time derivative of (·)−1. In the subsequent control development
and stability analysis, we will exploit the following properties [13] of the expressions given in (16),
(21), and the dynamic model given in (25) and (26).

Property 1: The transformed inertia matrix M∗(·) is symmetric, positive definite, and satisfies
the following inequalities

m1 kξk2 ≤ ξTM∗ξ ≤ m2 kξk2 ∀ξ ∈ R3 (27)

wherem1 andm2 are known positive constants, and k·k denotes the standard Euclidean norm.
Property 2: A skew-symmetric relationship exists between the transformed inertia matrix and the

auxiliary matrix V ∗m(·) as follows

ξT
µ
1

2
Ṁ∗ − V ∗m

¶
ξ = 0 ∀ξ ∈ R3 (28)

where Ṁ∗(·) represents the time derivative of the transformed inertia matrix.
Property 3: The robot dynamics given in (25) can be linearly parameterized as follows

Y0ϑ0 =M
∗Ÿ + V ∗mẎ +G

∗ + F ∗ (29)

where ϑ0 ∈ Rp contains the unknown constant mechanical parameters (i.e., inertia, mass,
and friction effects) and the constant camera calibration constants (i.e., θ0, α1, and α2) and
Y0(Y, Ẏ , Ÿ ) ∈ R3×p denotes a known regression matrix. The inverse of the auxiliary signal
γ(q) defined in (16) can also be linearly parameterized as shown below

1

γ
= Yγφγ > ρ (30)

where ρ ∈ R1 is a positive bounding constant, φγ ∈ Rp2 contains the constant camera calibra-
tion constants (i.e., θ0, α1, and α2), and Yγ(q) ∈ R1×p2 denotes a known regression matrix.

Property 4: To avoid singularities in the subsequent control law, we now define convex a region,
in the same manner as [3] and [11], for the parameter vector φγ defined in (30). Specifically,
based on (30), we define the space spanned by the vector function Yγ(q) as follows

Y1 = {Yγ : Yγ = Yγ(θ), ∀θ ∈ R1}. (31)

In addition, we define the region Λ1 as

Λ1 = {s1 : Yγs1 ≥ ρ, ∀Yγ ∈ Y1} (32)

where ρ was defined in (30). Moreover, we introduce the following definitions concerning the
region Λ1 and the subsequently designed parameter estimate vector φ̂γ(t) ∈ Rp2: int(Λ1) is
the interior of the region Λ1, ∂(Λ1) is the boundary for the region Λ1, φ̂

⊥
γ ∈ Rp2 is a unit

vector normal to ∂(Λ1) at the point of intersection of the boundary surface ∂(Λ1) and φ̂γ

where the positive direction for φ̂
⊥
γ is defined as pointing away from int(Λ1) (note, φ̂

⊥
γ is only

defined for φ̂γ ∈ ∂(Λ1)), P tr(µ1) is the component of the vector µ1 ∈ Rp2 that is tangential
to ∂(Λ1) at the point of intersection of the boundary surface ∂(Λ1) and the vector φ̂γ , and
P⊥r (µ1) = µ1−P tr(µ1) ∈ Rp2 is the component of the vector µ1 ∈ Rp2 that is perpendicular to
∂(Λ1) at the point of intersection of the boundary surface ∂(Λ1) and the vector φ̂γ .
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Property 5: We assume that the constant system parameters di defined in (22) can be lower and
upper bounded as follows

di < di < di (33)

where di, di ∈ R1 denote known, constant bounds for the unknown parameter di for i =
1, 2, 3, 4.

Remark 4 Since the robot manipulator is solely constructed of revolute joints, the kinematic and
dynamic terms denoted by M(q), Vm(q, q̇), G(q), F (q̇), and J(q) are bounded for all possible q(t)
(i.e., these kinematic and dynamic terms only depend on q(t) as arguments of trigonometric func-
tions).

Remark 5 The control laws developed in the subsequent sections will be designed in the camera-
space, where the actual control inputs to the robot actuators are computed according to (26); hence,
implementation of the proposed control laws will require q(t). Since the camera is assumed to be
uncalibrated (i.e., the camera parameters are not known exactly), q(t) can not be directly calculated
from measurements of y(t) and must be measured directly via standard link encoder sensors. The
need to measure the joint position from the joint encoders may lead some readers to question why
one could not simply utilize link sensors (e.g., optical encoders) to close the loop and only utilize
the camera system for trajectory planning. This question seems well motivated, since link sensors
are also required to implement vision-based controllers and in comparison with a vision system, link
sensors are generally less complex, less costly, and can be used at faster sampling times. However,
if the desired camera-space position and orientation are formulated in the camera-space, then it
is not obvious how to calculate the desired task-space position and orientation because the camera
parameters in (7) and (12) are not exactly known. Hence, a reasonable technique for addressing the
uncalibrated camera problem is to develop a control strategy that servos off the difference between
the desired position and orientation in the camera space and the actual position and orientation in
the camera space.

3 Control Development
Our control objective is to design a controller that ensures position and orientation regulation of
an object in the camera-space for the camera-in-hand configuration. That is, with an uncalibrated
camera mounted directly on the end-effector of a robot manipulator with parametric uncertainty,
our goal is to design a controller that regulates the robot end-effector such that the camera-space
position and orientation of an object is regulated to a constant, desired position and orientation.
Based on the control objective and the subsequent control development and stability analysis, we
define a filtered error signal [13], denoted by r(t) =

£
r1 r2 r3

¤T ∈ R3, as follows
r = Ẏ + µrY (34)

where µr denotes a positive, constant control gain and Y (t) was defined in (18). Since we will utilize
the filtered error signal defined in (34) in the subsequent control design, it is clear that in addition
to the required measurement of the link positions in the task-space (as described in Remark (5)), we
also require measurement of the object orientation, the angular velocity of the object, the position
of the object, and the time-derivative of the object position in the camera-space.

Remark 6 Note that for simplicity and without loss of generality, we have selected the desired
camera-space position as the origin of the camera-space and the desired orientation as zero degrees.
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3.1 Open-Loop Error System

To obtain the open-loop error system for r(t), we take the time derivative of (34), premultiply the
resulting expression by M∗(·), and then substitute (25) into the resulting expression for M∗(·)Ÿ to
obtain the following expression

M∗ṙ = −V ∗mẎ −G∗ − F ∗ + T−T τ ∗ + µrM∗Ẏ . (35)

After adding and subtracting the products Yr(·)φ̂r(t) and ksr(t) to the right-side of (35) and then
utilizing (34), we can rewrite the open-loop dynamics as follows

M∗ṙ = −ksr − V ∗mr + Yrφ̃r + Yrφ̂r + ksr + T−T τ ∗ (36)

where ks ∈ R1 is a positive constant control gain, the regression matrix parametrization Yrφr is
defined as

Yrφr = µrV
∗
mY −G∗ − F ∗ + µrM∗Ẏ (37)

Yr(·) ∈ R3×r1 denotes a known regression matrix, φr ∈ Rr1 contains the unknown constant mechan-
ical parameters (i.e., inertia, mass, and friction effects) and camera calibration constants (i.e., θ0,
α1, and α2), φ̃r(t) ∈ Rr1 denotes a parameter estimation error and is defined as follows

φ̃r(t) = φr − φ̂r(t) (38)

where φ̂r(t) ∈ Rr1 denotes a subsequently designed parameter estimate vector for φr.

3.2 Closed-Loop Error System

To facilitate the subsequent control design, we define the following linear parameterization

YHφH = −H
D̂−1

 ³Yrφ̂r + ksr´1³
Yrφ̂r + ksr

´
2

 , (39)

where (ξ)i represents the i− th element of a vector ξ, YH(t) ∈ R1×p1 represents a known regression
matrix, φH ∈ Rp1 represents a vector of constant unknown camera calibration parameters, H was
defined in (23), D̂−1(t) represents the inverse of D̂(t) ∈ R2×2, a matrix of dynamic estimates for the
elements of D, denoted by

D̂ =

·
d̂1 d̂2
d̂3 d̂4

¸
(40)

where d̂i(t) for i = 1, 2, 3, 4 are subsequently designed adaptation laws, and φ̂r(t)was given in
(38). Based on the previous development, we can now develop an adaptive control law to regulate
the camera-space position and orientation of an object. Specifically, based on the open-loop error
system given in (36) and the subsequent stability proof, we now design the auxiliary control signal
τ ∗(t) as follows

τ ∗ =

 τ ∗1
τ ∗2
τ ∗3

 =

−D̂−1

 ³Yrφ̂r + ksr´1³
Yrφ̂r + ksr

´
2


1

Yγφ̂γ

³³
Yrφ̂r + ksr

´
3
+ YHφ̂H

´
 (41)

9



where the elements of the adaptive estimate matrix D̂(t) given in (40) (i.e., d̂i(t) for i = 1, 2, 3, 4)
are generated by the following dynamic expressions

.

d̂i =


Proj

−Γir1
D̂−1

 ³Yrφ̂r + ksr´1³
Yrφ̂r + ksr

´
2


i

 ∀i = 1, 2

Proj

−Γir2
D̂−1

 ³Yrφ̂r + ksr´1³
Yrφ̂r + ksr

´
2


i−2

 ∀i = 3, 4
(42)

and the parameter estimate φ̂γ(t) ∈ Rp2 is defined by the following expression

.

φ̂γ =


Ω1 if φ̂γ ∈ int(Λ1)
Ω1 if φ̂γ ∈ ∂(Λ1) and ΩT1 φ̂

⊥
γ ≤ 0

P tr (Ω1) if φ̂γ ∈ ∂(Λ1) and ΩT1 φ̂
⊥
γ > 0,

(43)

where φ̂γ(0) ∈int(Λ1), the auxiliary signal Ω1(t) ∈ <p2 is defined as follows

Ω1 = −r3Γ5
Y Tγ

Yγφ̂γ

³³
Yrφ̂r + ksr

´
3
+ YHφ̂H

´
(44)

the dynamic estimates φ̂H(t) ∈ Rp1 and φ̂r(t) ∈ Rr1 are updated according to the following expres-
sions .

φ̂H = r3Γ6Y
T
H (45)

.

φ̂r = Γ7Y
T
r r (46)

where Γi ∈ R1 for i = 1, 2, 3, 4 are positive, constant adaptation gain parameters, ,Γ5 ∈ Rp2×p2,
Γ6 ∈ Rp1×p1 and Γ7 ∈ Rr1×r1 are positive, constant diagonal adaptation gain matrices, and the
projection operator denoted by Proj {·} is utilized to ensure that the parameter estimates d̂i(t) for
i = 1, 2, 3, 4 stay within the known region prescribed by (33), and that

d̂1 >
¯̄
d̄2
¯̄

d̂4 >
¯̄
d̄3
¯̄
. (47)

If φ̂γ(0) ∈ int(Λ1), the above update law for φ̂γ(t) defined in (43) ensures that Yγφ̂γ > ρ (The reader
is referred to the definitions given in Property 4, and the explanations given in [3] and [11]). After
substituting (41) into (36) for τ ∗(t) and then simplifying the resulting expression, we obtain the
final expression for the closed-loop error dynamics for r(t) as follows

M∗ṙ = −ksr− V ∗mr+ Yrφ̃r +
 00
YH φ̃H

−
 D̃D̂−1 02×1

01×2
Yγφ̃γ

Yγφ̂γ



³
Yrφ̂r + ksr

´
1³

Yrφ̂r + ksr
´
2³³

Yrφ̂r + ksr
´
3
+ YHφ̂H

´
 (48)

where the parameter estimation error signals, denoted by D̃(t) ∈ R2×2, φ̃γ(t) ∈ Rp2 , φ̃H(t) ∈ Rp1,
are defined as follows

D̃ = D − D̂ =
·
d̃1 d̃2
d̃3 d̃4

¸
, φ̃γ = φγ − φ̂γ , φ̃H = φH − φ̂H . (49)
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Remark 7 To ensure that the inequalities given in (47) are valid, we must ensure that

d1 >
¯̄
d̄2
¯̄

d4 >
¯̄
d̄3
¯̄
. (50)

One method to ensure that (50) is valid, is to restrict the initial orientation of the camera to the
following region

|θ0| < 45 [deg]. (51)

Note that (51) is a sufficient condition, and hence, other conditions may be employed which lead to
less conservative bounds on θ0.

4 Stability Analysis
Based on the closed-loop error system given in (48), we can now examine the stability of the adaptive
controller developed in the previous section through the following theorem.

Theorem 1 Provided the assumptions given in Remark 2, Remark 3, and Remark 7 are valid, the
control torque input given in (41), (42), (43), (45), and (46) ensure that the camera-space position
and orientation errors are asymptotically regulated in the sense that

lim
t→∞

y(t), θy(t) = 0 (52)

where y(t) and θy(t) are defined in (7) and (12).

Proof : To prove Theorem 1, we define a non-negative function denoted by V (t) ∈ R1 as follows

V =
1

2
rTM∗r +

1

2

4X
i=1

d̃iΓ
−1
i d̃i +

1

2
φ̃
T

γ Γ
−1
5 φ̃γ +

1

2
φ̃
T

HΓ
−1
6 φ̃H +

1

2
φ̃
T

r Γ
−1
7 φ̃r. (53)

After taking the time derivative of (53) and then substituting (48) into the resulting expression for
the product M∗ṙ(t), we obtain the following expression

V̇ = −ksrT r + rTYrφ̃r + r3YH φ̃H + rT
 −D̃D̂−1 02×1

01×2 −Yγφ̃γ

Yγφ̂γ



³
Yrφ̂r + ksr

´
1³

Yrφ̂r + ksr
´
2³³

Yrφ̂r + ksr
´
3
+ YHφ̂H

´
(54)

−
4X
i=1

d̃iΓ
−1
i

.

d̂i − φ̃
T

γ Γ
−1
5

.

φ̂γ − φ̃
T

HΓ
−1
6

.

φ̂H − φ̃
T

r Γ
−1
7

.

φ̂r

where we utilized (28) and the facts that

.

φ̃r(t) = −
.

φ̂r(t),
.

φ̃γ(t) = −
.

φ̂γ(t),.

φ̃H(t) = −
.

φ̂H(t),
.

d̃i(t) = −
.

d̂i(t) ∀ i = 1, 2, 3, 4.
(55)

After utilizing (42), (43), (44), (45), (46), and the development given in Appendix B, we obtain the
following expression

V̇ ≤ −ksrT r; (56)
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hence, utilizing (53) and (56), we can prove that r(t), φ̃r(t), φ̃γ(t), φ̃H , d̃i ∈ L∞ for i = 1, 2, 3, 4 and
that r(t) ∈ L2. Since φ̃r(t), φ̃γ(t), φ̃H , d̃i ∈ L∞ for i = 1, 2, 3, 4, it is clear from (38) and (49) that
φ̂r(t), φ̂γ(t), φ̂H , d̂i ∈ L∞ for i = 1, 2, 3, 4. Based on the fact that r(t) ∈ L∞, we can utilize (18) and
(34) to prove that Y (t), Ẏ (t), y(t), ẏ(t), θT (t), θ̇T (t) ∈ L∞. Using the facts that y(t), θT (t), θ̇T (t) ∈
L∞,we can utilize (7), (8), (9), (12), (14), (16) and (10) to prove that x1(t), x2(t), θ(t), θ̇(t), γ(q) ∈
L∞. Based on the previous boundedness arguments and the definitions given in (8), (9), (10), (19),
(20), (21), (22), and (23), it is clear that T (q, y), T−1(q, y), C(q), C−1(q) ∈ L∞, and hence, from (26)
and Remark 4 it is clear thatM∗(q, Y ), V ∗m(q, q̇, Y, Ẏ ), G

∗(q, Y ), F ∗(q, q̇, Y ) ∈ L∞. Based on the pre-
vious boundedness arguments , we can utilize (30), (37), and (39) to prove that Yγ(·), YH(·), Yr(·) ∈
L∞. Using the fact that r(t), Yγ(·), YH(·), Yr(·) ∈ L∞,we can conclude from (41), (42), (43), (45),
and (46) that τ ∗(t) ∈ L∞ ,where we have utilized the fact that the adaptive update laws given in
(42) and (43) are designed to ensure that potential singularities in (41) are always avoided. Based
on the facts that τ ∗(t) ∈ L∞ and C(q) are invertible (based on the assumption that the kinematic
singularities are always avoided (i.e., J−1(q) exists)), we can utilize (26) to prove that τ(t) ∈ L∞.
Since r(t), Yr(q), φ̃r(t), YH(t), φ̃H(t), d̃i(t), d̂

−1
i (t) ∈ L∞ for i = 1, 2, 3, 4, we can utilize (36) to prove

that ṙ(t) ∈ L∞. Based on the fact that r(t), ṙ(t), Y (t), Ẏ (t) ∈ L∞ it is clear that r(t) and Y (t)
are uniformly continuous. After taking the time derivative of (34) and utilizing the facts that
ṙ(t), Ẏ (t) ∈ L∞, we can also prove that Ÿ (t) ∈ L∞, and hence, Ẏ (t) is uniformly continuous.
From the fact that r(t) ∈ L2, we can prove that Y (t), Ẏ (t) ∈ L2 (see the proof of Lemma 1.6

of [2]). Based on the facts that r(t), Y (t), Ẏ (t) ∈ L2 and are all uniformly continuous, we can now
employ a corollary to Barbalat’s Lemma [17] to conclude that

lim
t→∞

r(t), Y (t), Ẏ (t) = 0, (57)

and hence, from (18) it is straightforward that

lim
t→∞

y(t), θT (t) = 0. (58)

Based on the fact that θT (t) ∈ L∞, we can utilize (12), (13), and (58) to prove the result given in
(52). ¤

5 Fixed Camera Extension
In this section, we illustrate how the development given in the previous sections can be slightly
modified to achieve position and orientation tracking of the end-effector of a rigid 3-link manipulator
in the camera-space, for an uncalibrated fixed-camera. Specifically, with an uncalibrated camera
that is fixed in a constant position that allows the camera to view the entire workspace, we illustrate
that the position and orientation of the end effector a rigid 3-link manipulator (each link having
some length) with uncertain mechanical parameters can track a time varying trajectory designed
in the camera space.

5.1 Model Development

Based on the fact that the camera is fixed at a constant position parallel with the workspace plane,
rather than in the camera-in-hand configuration, we must re-examine the camera model. To this
end, we utilize the pinhole lens model [12] for the fixed camera to modify (7) as shown below·

y1
y2

¸
= AR (θ0)

·
x1
x2

¸
+ p (59)
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where p ∈ R2 is a constant vector containing unknown camera parameters as shown below

p =

·
Oi1
Oi2

¸
−AR (θ0)

·
Oo1
Oo2

¸
(60)

where Awas defined in (9), R (·)was defined in (10), [Oo1, Oo2]T ∈ R2 denote the projection of the
camera’s optical center on the (X1, X2) plane, and [Oi1, Oi2]

T ∈ R2 denote the image center that is
defined as the frame buffer coordinates of the intersection of the optical axis with the image plane
(see [12] for details).

5.2 Open-Loop Error System

The control objective in this extension is to force the end-effector of a rigid, 3-link revolute robot
manipulator to move such that the position and orientation of the image of the end-effector in
the camera-space is forced to track a desired time-varying camera-space trajectory. To quantify
the control objective, we define a position and orientation filtered tracking error signal r(t) =£
r1 r2 r3

¤T ∈ R3, as follows
r = ė + µre (61)

where µr was defined in (34) and e(t) ∈ R3 is defined as follows
e = Yd − Y (62)

Y (t) was defined in (18) , y (t) ∈ R2 was defined in (59) and θT (t) ∈ R1 given in (12) is redefined
as follows(see Appendix A for details regarding the development of the following expression)

tan θy =
α2
α1
tan (θ − θ0) , θT (63)

and Yd(t) ∈ R3 is a desired position and orientation vector defined as follows

Yd =
£
yd1 yd2 yd3

¤T
where yd1(t), yd2(t) ∈ R1 represent the desired position of the end-effector in the camera-space and
yd3(t) ∈ R1 denotes the desired orientation of the end-effector in the camera-space.
After taking the time derivative of (59) and (63),we obtain the following expression

Ẏ = TCq̇ q̇ = C−1T−1Ẏ

where q(t) was defined in (5), the matrices T (q, y) and C(q) originally given in (17) are redefined
as

T =

·
AR (θ0) 02×1
01×2 γ

¸
(64)

and

C =

·
J2×3
11×3

¸
(65)

where γ(q) is redefined as

γ =

¡
1+ θ2T

¢
α1
α2
cos2 (θ − θ0) +

α2
α1
sin2 (θ − θ0)

,
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Ẏd(t) represents the time derivative of the Yd(t) given in (62), the Jacobian defined in (6) is now
defined as a 2 × 3matrix as shown in (65), the inverse of C(q) is assumed to exist, and that the
inverse of T (q, y) is given by the following expression

T−1 =

 D 02×1

01×2
1

γ

T (66)

where the submatrix D was defined in (22).
We can now obtain a relationship between the camera-space and the joint-space as follows

q̇ = C−1T−1
³
Ẏd − ė

´
. (67)

Utilizing the same procedure given in Section 2.4 along with the relationship given in (67), we
can rewrite the dynamic model of the robot manipulator in the following form

M∗(q, Y )ë + V ∗m(q, q̇, Y, Ẏ )ė+N
∗(q, q̇, Y, Ẏ , Ẏd, Ÿd) = T−T τ ∗ (68)

where

M∗(q, Y ) = T−TC−TM(q)C−1T−1

V ∗m(q, q̇, Y, Ẏ ) = T−TC−T
³
M(q)

³
C−1Ṫ−1 + Ċ−1T−1

´
+ Vm(q, q̇)C

−1T−1
´

N ∗(q, q̇, Y, Ẏ , Ẏd, Ÿd) = −T−TC−T
³
M(q)C−1T−1Ÿd +G(q) + F (q̇)

´
−T−TC−T

³
M(q)

³
C−1Ṫ−1 + Ċ−1T−1

´
+ Vm(q, q̇)C

−1T−1
´
Ẏd

τ ∗(q, t) = −C−T τ .

(69)

Based on the expression given in (68) and (69), we can now utilize the procedure given in Section
3.1 to develop the open-loop error system as follows

M∗ṙ = −ksr − V ∗mr + Yrφ̃r + Yrφ̂r + ksr + T−T τ ∗ (70)

where the regression matrix parametrization Yrφr is now defined as

Yrφr = µrM
∗ė + µrV

∗
me−N∗. (71)

5.3 Closed-Loop Error System

Based on the open-loop error system given in (70), we can now design the auxiliary control signal
τ ∗(t) as follows  τ ∗1

τ ∗2
τ ∗3

 =

−D̂−1

 ³Yrφ̂r + ksr´1³
Yrφ̂r + ksr

´
2


1

Yγφ̂γ

³
Yrφ̂r + ksr

´
3

 (72)

where the elements of the adaptive estimate matrix D̂(t), and the parameter estimate vectors
φ̂γ(t), φ̂r(t) were defined (42), (43), and (46), respectively, and the auxiliary signal Ω1(t) ∈ Rp2
originally defined in (44) is redefined as follows

Ω1 = −r3Γ5
Y Tγ

Yγφ̂γ

³
Yrφ̂r + ksr

´
3
. (73)
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After substituting (72) into (70) for τ ∗(t), we can obtain the following closed-loop error system

M∗ṙ = −ksr − V ∗mr + Yrφ̃r −

 D̃D̂−1 02×1

01×2
Yγφ̃γ

Yγφ̂γ

³Yrφ̂r + ksr´ . (74)

Given the closed-loop error system in (74), it is now straightforward to utilize the same stability
analysis arguments given in Section 4 to prove the following theorem.

Theorem 2 Provided the assumptions given in Remark 2, Remark 3, and Remark 7 are valid with
respect to the fixed-camera configuration, the control torque input given in (42), (43), (44), (46),
and (72) ensure asymptotic camera-space position and orientation tracking, in the sense that

lim
t→∞

e(t) = 0 (75)

where e(t) was defined in (62).

Proof : See the proof of Theorem 1.

6 Simulation Results
The proposed camera-in-hand regulation controller was simulated for a planar, 3-link robot manip-
ulator with the following dynamic model [6] τ 1

τ 2
τ 3

 =
 p1 + 2p3cos(q2) p2 + p3cos(q2) p5
p2 + p3cos(q2) p4 p5

p5 p5 p5

 q̈1q̈2
q̈3


+

 −p3 sin(q2)q̇2 −p3 sin(q2) (q̇1 + q̇2) 0
p3 sin(q2)q̇1 0 0

0 0 0

 q̇1q̇2
q̇3

 (76)

where p1 = 3.473 kg·m2, p2 = 0.242 kg·m2, p3 = 0.193 kg·m2, p4 = 0.3 kg·m2, and p5 = 0.2 kg·m2.
The desired setpoint was selected in the robot task-space as follows

xd =

·
0.2826 m
0.5937 m

¸
θd = 45 deg (77)

The camera parameters defined in (11) were selected as follows

α1 = 27.31 pixel ·m−1 α2 = 27.31 pixel ·m−1 θ0 = 30 deg (78)

Note that the parameter values given above were only required to simulate the proposed controller,
(i.e., the parameter values given in (78) are not required for the proposed adaptive controller). The
initial joint-space values for each link were selected as follows

q1(0) = 30 deg q2(0) = 30 deg q3(0) = 0.0 deg. (79)
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The control and adaptation gains were tuned until the best response was obtained. The values for
the gains are given below

k1 = 20.0 k3 = 20.0 k3 = 20.0 α = 0.15
Γ1 = 1.0 Γ2 = 1.0 Γ3 = 1.0 Γ4 = 1.0 Γ6 = diag {2.0, 2.0}

Γ7 = diag {0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2,
0.2, 2.0, 2.0, 0.2, 2.0, 2.0, 2.0}

(80)

where each element of the estimate vectors φ̂r(t) and φ̂H(t) was initialized to 0.0, while the matrix
D̂(t) was initialized to be non-singular as follows

D̂(0) =

·
1.0 0
0 1.0

¸
. (81)

The camera-space position and orientation tracking errors are shown in Figure 2 and the associated
control torque inputs are shown in Figure 3. The parameter estimates for elements of the matrix
D defined in (22) are shown in Figure 4. The plots for the parameter estimates of φr and φH are
not shown for the sake of brevity.

Remark 8 For simplicity, we selected the camera parameters α1,α2 such that

α1 = α2. (82)

Based on (82), the expression given in (30) is simplified to the following expression

1

γ
=

1

1+ θ2T
, (83)

and hence, we did not need to adapt for φγ of (43) since the expression given in (83) is measurable.

7 Conclusion
In this paper, we have presented an asymptotic position and orientation controller for the camera-
in-hand regulation problem. Specifically, we utilize an uncalibrated camera that is held by the
end-effector of a robot manipulator with uncertain mechanical parameters to obtain the position
and orientation of an object in the camera-space. We then regulate the camera-space position and
orientation utilizing an adaptive controller that compensates for the uncertainty in the robot-camera
system. An extension is also provided that illustrates how slight modifications can be made to the
camera-in-hand configuration controller to achieve asymptotic position and orientation tracking for
the fixed-camera configuration. Simulation results are provided to demonstrate the effectiveness of
the camera-in-hand controller, and future work will concentrate on constructing an experimental
testbed to further illustrate the effectiveness of the proposed controller. The testbed will consist of:
(i) an IMI direct drive robot manipulator, (ii) a Pentium II-based PC operating under QNX which
be utilized for implementing the control algorithms, and (iii) a Dalsa CAD-6 camera that is able to
capture 955 frames per second with a 8-bit gray scale at a 256× 256 resolution (i.e., a data rate of
63 megabytes per second).

16



0 5 10 15 20 25 30 35 40 45 50
-6

-4

-2

0

Position Error (y1)

[p
ix

]

0 5 10 15 20 25 30 35 40 45 50
-6

-4

-2

0

Position Error (y2)
[p

ix
]

0 10 20 30 40 50 60
-1

-0.5

0

0.5
Position Error (y3)

[p
ix

]

Time[sec]

Figure 2: Camera-Space Position and Orientation Errors
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A Appendix A : Expression for camera space orientation
To develop the expression given in (12), we first develop a relationship between the orientation of an
object in the task-space and the position of two features of the object in the task space. Specifically,
using basic geometrical observations (see Figure 5), we obtain the following expression

tan θd =

µ
xd22 − xd21
xd12 − xd11

¶
(84)

where θd(t) ∈ <1 represents the desired orientation of the object in the task-space and xd1j , xd2j ∈ <1
denote the desired position of the j − th feature point in the task-space (see Figure 5). We then
utilize the camera model given in (7) to express the position of the j − th feature point in the
camera-space as shown below·

yd1j(t)
yd2j(t)

¸
= BR(θ)

µ·
x1(t)
x2(t)

¸
−
·
xd1j
xd2j

¸¶
∀j = 1, 2 (85)

where ydj(t), ydj(t) ∈ <1 represent the position of the j − th feature in the camera-space, B was
defined in (8), Rwas defined in (10), and x1(t), x2(t) ∈ <1 represent the position of the end-effector
in the task-space (see Figure 5). To obtain the camera-space orientation of the object, we now
utilize the same geometrical observation utilized in (84) to obtain the following expression

tan θy =

µ
yd22 − yd21
yd12 − yd11

¶
. (86)

After substituting the expressions given in (85) for yd1j(t) and yd2j(t) ∀j = 1, 2 into (86) and
performing some algebraic manipulation, we can obtain the relationship between the task-space
orientation and the camera-space orientation that is given in (12).
A similar procedure could be used for the fixed camera extension case, where the orientation of

the end effector can be obtained in camera space.This leads to the expression given in (63).
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B Projection Algorithm
In order to show that the expression given in (54) reduces to the expression in given in (56), we
substitute for the update laws given in (42), (45), and (46) and then cancel common terms to obtain
the following expression

V̇ ≤ −ksrT r − r3
Yγφ̃γ

Yγφ̂γ

³³
Yrφ̂r + ksr

´
3
+ YHφ̂H

´
− φ̃

T

γ Γ
−1
5

.

φ̂γ (87)

Now, if we substitute for the adaptation laws given in (43) and (44), then we must evaluate (87)
for each of the three cases given in (43). In addition to showing (54) reduces to the expression
given in (56), we will describe how the parameter update laws given in (43) and (44) ensure that if
ϑ̂γ(0) ∈int(Λ1), then φ̂γ(t) never leaves the region Λ1, ∀t ≥ 0.
Case 1: φ̂γ(t) ∈int(Λ1)
When the estimate φ̂γ(t) lies in the interior of the convex region Λ1, described in Property 4,

(87) can be expressed as

V̇ ≤ −ksrT r − r3
Yγφ̃γ

Yγφ̂γ

³³
Yrφ̂r + ksr

´
3
+ YH φ̂H

´
+ r3φ̃

T

γ

Y Tγ

Yγφ̂γ

³³
Yrφ̂r + ksr

´
3
+ YH φ̂H

´
(88)

thus, for Case 1, we can conclude that (54) reduces to the expression in given in (56). In addition,
the direction in which the estimate φ̂γ(t) is updated for Case 1 is irrelevant, since the worse case
scenario is that φ̂γ(t) will move towards the boundary of the convex region denoted by ∂(Λ1).

Case 2:φ̂γ(t) ∈ ∂(Λ1) and ΩT1 φ̂γ
⊥ ≤ 0

When the estimate φ̂γ(t) lies on the boundary of the convex region Λ1 described in Property
4 and ΩT1 φ̂γ

⊥ ≤ 0, then (87) can be expressed as (88); thus, for Case 2, we can conclude that
(54) reduces to the expression in given in (56). In addition, the vector Ω1 has a zero or nonzero
component perpendicular to the boundary ∂ (Λ1) at φ̂γ that points in the direction towards the
int(Λ1). Geometrically, this means that φ̂γ is updated such that it either moves towards the int(Λ1)
or remains on the boundary; hence, φ̂γ(t) never leaves Λ1.
Case 3: φ̂γ(t) ∈ ∂(Λ1) and ΩT1 φ̂γ

⊥ > 0
When the estimate φ̂γ(t) lies on the boundary of the convex region Λ1 described in Property 4

and ΩT1 φ̂γ
⊥ > 0, then (87) can be expressed as

V̇ ≤ −ksrT r − φ̃
T

γ Γ
−1
5

¡−Ω1 + P tr (Ω1)¢ (89)

where (44) was utilized. Based on (89), we can utilize Property 4 to conclude that

V̇ ≤ −ksrT r − φ̃
T

γ Γ
−1
5

¡− ¡P⊥r (Ω1) + P tr (Ω1)¢+ P tr (Ω1)¢ (90)

≤ −ksrT r + φ̃
T

γ Γ
−1
5 P

⊥
r (Ω1) .

Because φ̂γ ∈ ∂(Λ1), and φ̂γ must lie either on the boundary or in the interior of Λ1, then the
convexity of Λ1 implies that φ̃γ(t) defined in (49) will either point tangent to ∂(Λ1) or towards

int(Λ1) at φ̂γ(t). That is, φ̂γ(t) will have a component in the direction of φ̂
⊥
γ (t) that is either zero

or negative. In addition, since P⊥r (Ω1) points away from int(Λ1), we have that φ̃
T

γ Γ
−1
5 P

⊥
r (Ω1) ≤ 0;

thus, (90) reduces to (56). Furthermore, since
.

φ̂γ(t) = P
t
r(Ω1), we are ensured that φ̂γ(t) is updated

such that it moves tangent to ∂(Λ1); hence, φ̂γ(t) never leaves Λ1.
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Figure 4: Parameter Estimates for D(t)

Figure 5: Geometric Relationship Between the Position of Object Features and the Object Orien-
tation in the Task-Space
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