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Introduction  -  Problem Class 
 
 
Large problems with hundreds or thousands of 
parameters.   
 
The function is evaluated by performing a multistep 
calculation using a computer code.   
 
Calculation of the function is expensive and calculation of 
the gradient of the function is very expensive.   
 
We will use several of the problem classification methods 
discussed in Torn and Zilinkas (1989) to introduce our 
method.   
 
 



Introduction  -  Deterministic 
 
 
Grid search with M evaluations in each dimension.   
Function evaluations for N parameters is M

N
.   

If M = 1000 and N = 10, evaluations are 10
30

.   
If each function evaluation requires 1000 flops,  
gigaflop computer: 3 10

13
 evaluations per year  

and grid search would require 3 10
16

 years.   
IBM to develop a petaflop computer: 3 10

10
 years.   

 
Clearly, grid searches are not practical for problems with 
hundreds or thousands of parameters.   
 
A trajectory search evaluates the function at points along 
a trajectory that goes through all local minima.   
 
Deterministic methods are impractical for problems with 
many parameters.   
 
 
 



Introduction  -  Probabilistic 
 
Line Searches 
Random line searches, but not lines in random directions.   
We do line searches for a random choice of parameter.  
Number of directions increases exponentially with N,  
Number of parameters increases linearly.   
 
During line search for a chosen parameter,  
use a covering method to detect subregions that cannot 
contain a local minimum and excludes them from further 
exploration.   
 
The goal of clustering methods is to prevent the 
rediscovery of local minima.   
We descend to a local minimum and do not descend again 
until we find a point that is lower that the best current 
minimum (in a new basin of attraction).   
Our method is a generalized descent method.   
 
 



Optimization problem  -  Sample Problem 
 
 
Optimization problem:  given an objective function [f(x) 
where x is an N dimensional vector that is constrained to 
lie in a domain (P)], find the global minimum (xg).   
Find a point xg in P such that  f(xg)  ≤≤  f(x)  for all x in P.   
 
Sample problem: 1D function displayed with five minima.   

 
 



Optimization problem  -  TRUST 
 
 
TRUST [Barhen et al. (1997)] finds the global minimum by 
executing a series of cycles of descent and tunneling.   
 
Begin at point x1, descend to the first local minimum f1.   
Tunnel (move in the positive x direction) until find a value 
smaller than f1 and then we would descend to the next 
local minimum.   
Continue to tunnel and descend until reach the upper 
bound on x.   
The lowest value would be the global minimum.   
 
A rigorous proof [Cetin et al. (1993)] has shown that 
TRUST will find the global minimum for the 1D case.   
 
Cannot use the 1D trajectory method for large problems 
because the number of function evaluations increases 
exponentially with the number of dimensions.   
 
 
 



TRUST  -  Line Search 
 
 
TRUST had good success using many 1D paths to search 
for the global minimum of a large problem. 
From a local minimum, we explore each of the N 
dimensions of the problem one at a time.   
When we find a point where with a lower value than the 
current local minimum, we descend to the next local 
minimum.   
If we have explored all of the N directions and have not 
found a lower value, we stop the algorithm.   
 
The choice of the dimension to search next can be 
numerical order or random.   
 
We have worked on another global optimization problem 
(protein folding) that cannot be solved by line searches.   
It requires an exhaustive search of an M

N
 grid.   

 



The SPT Algorithm  -  Introduction 
 
 
SPT (Stochastic Pijavskij Tunneling) is a new algorithm 
that greatly speeds up the 1D tunneling phase.   
The algorithm is stochastic because the function is 
evaluated at random points rather than at every point on a 
grid.   
The algorithm was developed by Oblow (1999) and uses 
Pijavskij cones to eliminate regions of the 1D space  
 
[for a discussion of Pijavskij's algorithm see: Pijavskij 
(1967), Shubert (1972), and Torn (1989)].   
 
Before we discuss SPT, we will discuss two features of the 
algorithm: descent to a local minimum and the Lipschitz 
constant. 
 
 



The SPT Algorithm  -  Descent 
 
 
Calculation of the function is expensive and calculation of 
the gradient of the function is very expensive.   
Gradient required to descend to a local minimum.   
Cost high but benefit is high. 
When find a lower value than all previous,  are in a new 
basin of attraction. 
Continually descend toward the global minimum.   
 
An algorithm that descends from many random starting 
points can repeatedly descend into a previously identified 
local minimum.   
 
Two benefits of descent:   
No gradients while searching and use gradients only when 
descending to a new and lower local minimum.   
 
 
 



The SPT Algorithm  -  Lipschitz constant 
 
 
Key parameter in the SPT algorithm is a pseudo-Lipschitz 
constant (Lps).  Used to define unpromising regions in the 
search space.  For the 1D case (where the parameter 
vector is a scalar), the Lipschitz constant (L) is an upper 
bound on the rate of change of the objective function 
[f(x)]: 

   
df
dx

≤≤ L 

 
The pseudo-Lipschitz constant (Lps) is the largest slope of 
any line drawn from the global minimum that is tangent to 
the curve that defines the basin of attraction for the global 
minimum   
In general, the pseudo-Lipschitz constant is less than the 
Lipschitz constant.  For a square well, the Lipschitz 
constant is infinity while the pseudo-Lipschitz constant is 
finite (if we assume that the location of the global 
minimum is at the midpoint between a and b).   
 



 
The SPT Algorithm  -  1D Case 
 
 

 
 
 
 



The SPT Algorithm  -  Notes for 1D Case 
 
 
 We will use Fig. 1 to discuss a simple version of the SPT algorithm for the 1D case.  We 
evaluate the function at point 1 (x1).  From x1, we descend to the local minimum (f1).  The local 
minimum is our best candidate for the global minimum:  f* = f1.  From x1, we draw a line (half of a 
Pijavskij cone) that has the same slope as the pseudo-Lipschitz line.  The intersection of the line from x1 
and the line (y = f1) determines a small region of the x axis (the left shaded region on the f1 line in Fig. 1) 
that cannot have a lower value than the current minimum value (f1).   
 
 Rather than performing cycles of descent and tunneling, we randomly choose a second point in 
the available portion of the x axis (x2) and evaluate the function.  If f(x) is greater than f*, we are 
tunneling and if f(x) is less than f*, we descend to a local minimum.  Since f(x2) is less than f*, we are 
tunneling.  From x2, we draw a Pijavskij cone (the magnitudes of the slopes of the two lines are equal to 
the slope for the pseudo-Lipschitz line).  The intersection of the cone from x2 and the f1 line excludes a 
small region of the x axis.   
 
 We randomly choose a third point in the available portion of the x axis (x3) and evaluate the 
function.  Since f(x3) is less than f*, we are in the basin of attraction of a new local minimum.  From x3, 
we descend to the local minimum (f2) and set f* = f2.  From x3, we draw a Pijavskij cone.  Since the 
current local minimum is much lower than f1 , the three Pijavskij cones now exclude much more of the x 
axis.  We choose a fourth point in the available portion of the x axis (x4) and evaluate the function.  
Since f(x4) is greater than f*, we are tunneling.  From x4, we draw a Pijavskij cone that excludes a large 
region of the x axis.   
 
 We choose a fifth point in the available portion of the x axis (x5) and evaluate the function.  
Since f(x5) is less than f*, we are in the basin of attraction of a new local minimum.  From x5, we descend 
to the local minimum (f3) and set f* = f3.  We evaluate the function at a few more points and conclude 
that f3 is the global minimum for the example in Fig. 1.   

 
 
 
 



The SPT Algorithm  -  Lower Bound 
 
 
The Pijavskij cones exclude more of the x axis as the 
current best local minimum (f*) decreases.   
 
Improve the efficiency of the SPT algorithm by adding a 
second parameter: a close lower bound for the global 
minimum (fLB) and using the minimum of f* and fLB to define 
the cones.   
 
In the early stages of the algorithm, fLB will increase the 
region on the x axis that is excluded by the Pijavskij 
cones.   
At the later stages of the algorithm, the current candidate 
for the global minimum (f*) may become lower than fLB and 
the parameter will have no impact.   
 
After several attempts at finding the global minimum, we 
can use the best value found to date as an estimate of fLB.   
 



The SPT Algorithm  -  Resolution 
 
 
The "resolution" as the width of the smallest basin of 
attraction that can be detected.  We use 100,000 points in 
the parameter range.   
SPT allows high resolution at low cost.   
 
Worst case: Golf Course.  Objective function is constant 
with randomly distributed square wells (w = resolution). 
No exclusion by the Pijavskij cones. 
Need 100,000 function 100,000 function evaluations.   
 
The example problem is much better than the worst case, 
the Pijavskij cones quickly eliminate all of the x axis and 
we usually evaluate the function about ten times to 
achieve a resolution of 100,000 points in the parameter 
range.   
 
No penalty for working at high resolution.   
 
 



The SPT Algorithm  -  Parameter Connections 
 
 
Two complementary methods to estimate Lps:  
measure derivatives and set resolution.   
Can monitor the derivatives and determine the largest 
values which are lower bounds for Lps.   
 
In 1D, Lps is the ratio of delta f(x) to delta x.   
Delta f = f - fLB.  Delta x = one half the resolution.   
Thus, fLB and the resolution yield Lps .   
 
Since resolution is very small, second method gives much 
higher values than measuring derivatives.   
 



The SPT Algorithm  -  N D Problem 
 
 
1.  Select a starting point (x).   
2.  Descend to a local minimum.   
3.  Begin the outer loop. 
4.  Begin a loop over the N components of x.   
 For each loop, randomly choose n:  1 ≤≤ n ≤≤ N.   
5.  Evaluate Kr random points xnr for xn.   
 If xnr is not excluded evaluate the function.   
 Save the xnr that gives the lowest value for f(x).   
6.  If new basin of attraction, descend to minimum. 
7.  End of the loop that began in step 4. 
8.  End of the outer loop. 
 
 
 



The Example Problem  -  Geophysics 
 
 
Data are provided by trace [t = 1, Nt].   

Data are  Fourier components  [f = 1, Nf].   

The data [D
f t

] are complex numbers.   

Trace: source [st] to a receiver [rt] via a midpoint [kt].   

For each midpoint (k), the data are stacked: 

 Hk f  =  exp[2ππif(S ts ++ R tr )]Dft
t
∑∑  

 
Define the energy for each CMP (Ek): 

 E
k
  =  | Hkf |

2

f
∑∑  

 
The statics corrections (Ss and Rr) are determined to 

maximize the total energy (E) in the stacked data: 

 E  =  Ek
k
∑∑  

 
 



Example Problem  -  Parameters and Results 
 
 
Synthetic data set.  Added disrupting statics to measured 
seismic data.   
 
316 parameters (100 shots and 216 receivers), 
4776 traces, and 423 CMPs.   
118 Fourier components. 
 
Base Energy (x = 0)  =  882. 
Upper Bound.  G  =  kG

k
∑∑   =  6589. 

 
Close upper bound.  

D
G  =  

k
DG

k
∑∑   =  2706. 

 
Best solution = 2441. 
 
Have 22 points with energy above 2365. 
 
 



Results 
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