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ABSTRACT 

Error norms for three variants of Larsen’s benchmark problem are evaluated 
using three numerical methods for solving the discrete ordinates approximation of 
the neutron transport equation in multidimensional Cartesian geometry. The three 
variants ,of Larsen’s test problem are concerned with the incoming flux boundary 
conditions: unit incoming flux on the left and bottom edges (Larsen’s configuration); 
unit, incoming flux only on the left edge; unit incoming flux only on the bottom edge. 
The three methods considered are the Diamond Difference (DD) method, and the 
constant-approximation versions of the Arbitrarily High Order Transport method of 
the Nodal type (AHOT-N), and of the Characteristic (AHOT-C) type. The cell-wise 
error is computed as the difference between the cell-averaged flux computed by each 
method and the exact value, then the Lr, La, and L, error norms are calculated. 
The results of this study demonstrate that while integral error norms, i.e. L1, Lz, 
converge to zero with mesh refinement, the pointwise L, norm does not due to 
solution discontinuity across the singular characteristic. Little difference is observed 
between the error norm behavior of the three methods considered in spite of the fact 
that AHOT-C is locally exact, suggesting that numerical diffusion across the singular 
characteristic as the major source of error on the global scale. However, AHOT-C 
possesses a given accuracy in a larger fraction of computational cells than DD. 

1 INTRODUCTION 

Error analysis of the numerical methods employed in deriving discrete-variable 
formulations for solving the multidimensional neutron transport equation have long 
established their suitability. The multigroup approximation of the energy dependence 



was shown to converge to the exact solution with refinement of the energy group 
structure if the fluctuations in the total and scattering cross sections diminish with 
refinement of the energy group structure (Victory, 1985). 

Madsen (1971) proved convergence of the discrete ordinates method solution 
to the exact solution of the continuum angle, monoenergetic transport equation pro- 
vided the scattering ratio is smaller than 1, and decreasing error in the quadrature 
formula with increasing angular quadrature order. Then Madsen (1972) also proved 
convergence of the Diamond Difference (DD) method solution to the discrete ordinates 
approximation of the monoenergetic, multidimensional transport equation; however, 
the value of the proof is questionable because it requires the continuity of the exact 
solution. Later Madsen (1973) derived L1 and Lz a posteriori error bounds on nu- 
merical solutions to the multidimensional neutron transport equation but this time 
requiring only that the exact solution be absolutely continuous almost everywhere. 
Still, this did not prove pointwise convergence, or even convergence in a norm sense i 
with mesh refinement, and it is not clear whether relaxing the continuity requirement 
in (Madsen, 1972) to almost everywhere will correctly settle this question. 

The above results, among others, are based on rigorous mathematical analysis 
and yielded proofs of solution convergence in one or more norms that can be used to 
set an upper bound on the error in the solution related to the discretization parame- 
ters in each of the independent variables. Important as this may be, it rarely produces 
sufficiently tight error bounds that are useful in practical applications. Hence, many 
works were published that aimed at quantifying the solution error for various meth- 
ods via numerical experiments on specific, typically simple problem configurations, 
and assuming that the observed behavior extends to other more complex practical 
applications. Clearly this approach is not rigorous, nevertheless it produces useful 
information, namely explicit values of the error on a per computational cell basis. 

This paper examines one such simple monoenergetic, single discrete ordinate 
configuration proposed by Larsen (1982) to study the solution convergence properties 
of numerical methods employed in solving the discrete ordinate approximation of the 
neutron transport equation. Larsen (1982) determined the convergence rate of the 
Li, Lz, and L, error norms of the DD method and found that all three approached 
zero with mesh refinement in fractional powers of the computational cell size. More 
recently, a local error analysis of DD, among other methods, implied lack of conver- 
gence of the solution to the exact local solution, with diminishing cell size, when the 
incoming edge fluxes are not equal (Azmy, 2000). 

The main goal of this work is to reconcile these seemingly contradictory conclu- 
sions and put them in perspective with earlier rigorous analyses, particularly (Mad- 
sen, 1972). In Sec. 2 we briefly review the local error analysis of WDD methods 
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and determine the asymptotic order of the local error as a function of cell size for 
fixed cell optical ascect ratio. Expre&ions for the exact cell’-averaged‘ flux in Larsen’s 
benchmark problem are derived in Sec. 3 for the benefit of determining the cell-wise 
error, The cell-averaged flux obtained by DD, and the lowest order approximation 
of AHOT-N, and of AHOT-C are used in Set:, 3 to ,compute and compare the global 
error for each of these methods., Our conclusions from-this exercjse are -summar@ed 
in Sec. 5. 

2 LOCAL ERROR ANALYSIS 

A local error analysis of the Step method, and a class of Weighted Diamond 
Difference (WDD) methods, that includes as special cases the DD, and AHOT-N 
lowest order methods, has been presented recently for two-dimensional Cartesian 
geometry (Azmy, 2000). By local we mean the error in the cell-averaged and outgoing 
edge-averaged angular flux values assuming exact incoming edge-averaged angular 
flux, and cell averaged distributed source values. 

Consider a rectangular computational cell of width 2a and height 24 and 
homogeneous material composition represented by the macroscopic total cross section, 
LT, and without any loss of generality consider a discrete ordinate in the first quadrant 
of angular space, CL, r] > 0. It is possible to exactly compute the contribution to the 
cell-averaged flux from three regions within the celi defined by the incoming corner 
and’ the discrete -ordinate angle‘ under consideration. This is accomplished by using 
the method of characteristics to derive an expression for the flux at an arbitrary 
point within the cell in terms of the incoming edge fluxes, i.e. the bottom-, and left- 
edge fluxes, +s, and $.JL, respectively, and the effective distributed, source, s. For the 
purpose of the lowest order spatial approximation considered here these quantities are 
assumed constant; they are also assumed to be exact by virtue of the local analysis 
conducted here. The resulting space dependent expression for the angular flux is 
then averaged over the cell volume to produce the cell-averaged flux, 3, then over the 
length of each outgoing edge to produce the outgoing edge-averaged angular fluxes ,. 

and top edges, 9 R, and ?PT, respectively, on the right, 
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In Eqs. (1) we defined the cell optical dimensions E, = (2aa)/p, ey 5 (2&)/q, 
and the cell optical aspect ratio 6 G cy/eZ; without any loss of generality we assume 
O<J<l. 

.-, 

The WDD equations in the same computational cell include a balance equa- 
tion, a weighted difference relation in the z-dimension, and one in the y-dimension 

respectively, where a, E [0, l] is the spatial weight in the u z Z, y dimension. The 
selection of the spatial weights determines a specific WDD scheme; oU = 0 is DD, 

= 1 is the Step Method (SM), and a, = coth(eJ2) - 2/cU is the lowest order 
%dal Integral Method (AHOT-NO). 

By solving the WDD equations for the cell-averaged flux, 4, and the outgoing 
edge-averaged angular fluxes on the right, and top edges, $R and T)&-, respectively, as 
a function of ,?/a, $JL and $s, as well as the parameters Ed, oz, Q, and ay, the error 
is computed as the difference from the exact solution represented by Eqs. (1). It has 
been shown that when the incoming fluxes are not equal, hence the exact solution 
is discontinuous across the characteristic line subtended from the lower left corner, 
the numerical method solutions do not converge to the exact solution as the cell size 
approaches zero, i.e. ex + 0, E = con& In contrast, when the incoming edge fluxes 
are equal, hence the solution is continuous but not smooth, across the characteristic, 
the numerical methods solutions converged like O(E,). Clearly these conclusions do 
not apply to characteristic methods, e.g. AHOT-C, since these are constructed from 
the exact local solution to the transport equation. * 

Further insight into the lack of convergence of the WDD-computed cell-averaged 
flux to its exact value is gained by determining the asymptotic behavior of the ex- 
act and numerical methods solutions with diminishing cell size. Hence introducing 
ey G 66, and ex + 0 in Eq. (1) yields 

G-+ l-5 ( > E h3+gL+O(ts). 

Solving the WDD equations simultaneously, then taking the same limits in the 
, -i 
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expression for 4 results in 

4 -+ ~+$$$v)]~i +I3 + [i+; ($$]-‘+‘L + O(h). (4) 

A few observations follow from Eqs. (3) and (4). First we note that the depen- 
dence of the cell-averaged flux, both exact and approximate, on the distributed source 
is O(e,) while its dependence on the incoming edge-averaged flux is 0( 1). Second, 
the difference between the asymptotic expressions for the exact and approximate cell- 
averaged fluxes does not vanish in general as E, + 0, as predicted previously, (Azmy, 
2000). Third, for WDD methods with weights ox, ay + 0 as E%, ey + 0, such as 
DD and AHOT-NO the local. error ?~~~,~~~~s,,l~~~,.p(~,) if $s = $,L, again as observed 
earlier (Azmy, 2000). 

3 EXACT CELL-WISE SOLUTION 

Larsen’s benchmark problem was designed to have a simple configuration for 
which an analytical solution can be easily determined and used to compute the conver- 
gence order of the DD cell-averaged flux error with mesh refinement (Larsen, 1982). 
The problem domain is a rectangular region of dimensions X x Y, containing a non- 
scattering material and no distributed fixed source. Only one discrete ordinate, p, 7 > 
0, is considered, and since the scattering ratio is zero the scalar flux is a fixed fraction 
of the angular flux in this direction. Constant incoming flux is defined on the left 
and bottom boundaries, and the analysis was confined to the case $JL = 1 = $lrg. 
In view of the results presented in Sec. 2, the dominating role that the incoming 
edge-averaged flux discontinuity plays in determining the local error becomes evident 
and must be considered in any further analysis. Hence in this work we relax this 
condition. 

A sequence of uniform meshes is then imposed on the problem domain, each 
mesh characterized by the integer n such that the number of computational cells in 
the z, and y dimensions is 2n. It follows that for mesh n the computational cell 
size is 6, x Sy E X/2n x Y/2n, and its optical dimensions become eZ x ey 3 
X/(2” ,Q) x Y/(2n q). The exact solution to this problem is given by 

(5) 
The solution is not defined along the singular characteristic (SC), xfp = y/q, since it 
could experience a discontinuity across it. 

Larsen (1982) computed the error as the difference between the DD solution, 
i.e. cell-averaged flux values, and the exact point values at cell centers obtained with 
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Fig. 1. Possible Intersection of SC with Cell Edges Over the (xB, XT)-plane 

the analogue of Eq. (5), correctly arguing that the difference will not change the order 
of convergence. In order to improve the fidelity of the global error analysis conducted 
in Sec. 4, in this section we develop exact formulas for the cell-averaged flux over 
individual cells using the exact solution, Eq. (5). Clearly such formula will depend on 
the positional relationship of the cell with respect to the SC, which can be quantified 
by the intersection of SC with the bottom and top edges of the computational cell. 
In particular, consider cell i, j whose center lies at ([i-1/2] S, , [j-1/2] Sy) and whose 
four corners have coordinates ([i-l] S, , [j-l] &), (i 6% , [j-l] &), (i S, , j &), ([i-l] 
6, , j SY> ordered counter-clockwise starting from the lower left corner. Denote the 
coordinates of the intersection points of the SC with the bottom, and top edges of 
this cell with ([i - xB] S, 7 [j - 11 &), and ([i - XT] 6,: , j Sy), respectively, where 

@-XB)‘x = ;(j-I)&, j XB = i-(j-l):, (64 

XT = i- jz = XB - %.. 

EX 
w 

If the SC intersects the bottom edge, then XB E [O,l], attaining the values 
0, and 1 on the right, and left lower corners of the cell, respectively. Analogously, 
if the SC intersects the top edge, then XT E. [O,l], attaining the values 0, and 1 on 
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the right, and left upper corners of the cell, respectively. Since XB > XT by Eq. 
(6b), it follows that the SC’ does”not intersect the cell at all if XB < 0, or XT > 1, 
where the cell lies entirely above, or below the SC, respectively. There is a total of 
six possible combinations of XB and XT satisfying XB > XT that must be considered 
separately. These are depicted in Fig. 1 in color-code on the xg, XT plane: the above 
and below subscripts refer to the two cases listed above; the other subscripts refer to 
the edges intersected by the SC with B, R, T, L, denoting bottom, right, top, and 
left, edges respectively. Edges are assigned to regions in the XB, XT plane as depicted 
in the figure; the color within the dashed lines marks the region to which an edge is 
assigned. 

Finally, integrating the exact solution, Eq. (5), over cell i, j in each of the six 
valid regions shown in Fig. 1 yields the expressions 

7) above = (74 

(74 

+ LT = -!- [e-‘eu {h$B (e” - XT) -/- $L (1 - &%)} 
cxey 

+ ewie” (q/jB (exTcr -ee2) + CL~yec,$L}] , (74 
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+- 
fx 
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where the intercept parameters 5~ and (;2 are defined in analogy to XB and XT. 

The above expressions are used in Sec. 4 to generate color-coded plots of 
the exact solution to Larsen’s benchmark problem, and of the cell-wise error. Also 
presented in Sec. 4 are solutions and error values for the locally exact, lowest order 



approximation of AHOT-C (AHOT-CO) whose equations for cell i, j are the same as 
Eqs. (1). 

~.----X 

4 GLOBAL ERROR ANALYSIS 

The original work on Larsen’s benchmark problem set the rectangular domain 
dimensions at X x Y = 1.3 x .9 mfp, and considered the source free case, s 
= 0 (Larsen, 1982). In light of the asymptotic analysis presented in Sec. 2, i.e. 
Eqs. (3) and (4), this setting of the distributed source does not influence the order 
of the error in cases with discontinuous incoming edge-averaged flux. The lack of 
scattering causes the angular fluxes to be completely decoupled, hence the error in 
only one direction, ,u = -7 = q, need be considered. The sequence of uniform meshes 
described earlier, X 2-n x Y 2~“, is applied to the rectangular region and numerical 
solutions are obtained for the cell-averaged flux using WDD with the spatial weights 
set to select either the DD or AHOT-NO. Also Eqs. (1) are used to obtain the AHOT- 
CO cell-averaged flux, and Eqs. (7) are used to computed the exact cell-averaged flux 
distribution. 

Three cases are considered in the analysis: $JL = 0, $8 = 1; qL = 1, v,!J~ = 0; 
and the case considered by Larsen (1982) $L = 1, $JB = 1. For each of these cases 
we compute, in 64-bit arithmetic, the exact and numerical methods solutions, then 
compute the error distribution as the difference between these quantities. The error 
distribution is then used to calculate Lr, Lz, and E, norms for each considered 
method, and each choice of the boundary conditions. The error norms for the DD 
and AHOT-CO methods and the case 6~ = I, +]B = 1 are shown in Fig. 2; the plots 
include the error norm for each considered mesh, i.e. -n = -15,. . . , 0, as well as 
the asymptotic behavior of each error norm. The latter is plotted as a straight line 
(in the log scale employed) emanating from each norm’s error point at n=15 with 
gradient -Zog(E&&e,r4), where Q,, is the Le error norm, J? = 1,2,00. The computed 
asymptotic rate of convergence of each error norm for this case is provided in Table 
1. The DD results shown in Fig. 2 and Table 1 are consistent with Larsen’s (1982). 
In essence, both the DD (by implication AHOT-NO also) and AHOT-CO solutions 
converge to the exact cell-wise solution with mesh refinement in all three norms: It is 
surprising, however, that in spite of the locally exact nature of AHOT-CO its solution 
error is larger than the WDD schemes. 

Analogous error norm plots for the case $JL = 0, $B = 1 are presented in 
Fig. 3, and the asymptotic convergence rates are presented in Table 2. The effect 
of solution discontinuity across the SC is evident in this case in more than one way. 
First, pointwise convergence of the solution is not achieved by any of the methods 
as evidenced by the L, error norm. Second, all three error norms deteriorate signif- 
icantly from the ?,!Q = 1, $clg = 1 case where the solution is continuous across the 

f--- 
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SC. Finally, the AHOT-CO error norms are not consistently worse than their WDD 
counterparts. 

Table 1. Asymptotic Rate of Convergence of Error Norms for DD, AHOT-NO, and 
AHOT-CO Solutions for the Case $L = 1, $JB = 1. 

Method Lr L2 J&J 
DD 1.29517 0.99824 0.64461 ’ 
AHOT-NO 1.28863 0.99720 0.64524 
AHOTZO 0.98986 0.75573 0.49406 

Table 2. Asymptotic Rate of Convergence of Error Norms for DD, AHOT-NO, and 
AHOT-CO Solutions for the Case $L = 0, +B = 1. 

DD 0.47618 0.32073 -0.04297 -’ 
AHOT-NO 0.47304 0.31716 -0.04307 
AHOT-CO 0.49703 0.24389 -0.03016 

How general these observations are, and what they translate into in real ap- 
plications with scattering and geometric detail is not immediately evident from the 
results presented in this work. What is evident, though, is that flux discontinuity has 
a detrimental effect on solution accuracy as predicted by the local error analysis of 
Sec. 2. The Lr and L2 norms indicate that the adverse effect of flux discontinuity is 
local, and with mesh refinement its locale gets narrower and narrower, in agreement 
with Madsen’s (1973) hypothesis and result; this is further verified by plots below. 

One of the advantages deterministic methods have over Monte Carlo methods 
is that they naturally produce solution distributions over the problem domain, often 
a valuable piece of information for the user. Hence accuracy in the integral norm 
sense offered by the L1 and L2 norms does not provide a good tool for judging these 
methods in this respect. Color-coded plots of the exact, DD, and AHOT-CO cell- 
averaged fluxes over the z,y-plane are illustrated in Fig. 4 with n=4, 6, 8, and 10, 
for the case $1; = 0, $B = 1. The plots of the flux in Fig. 4 illustrate an interesting 
difference between the DD and AHOT-CO solutions. The solution discontinuity causes 
ripples in the DD solution surface below the SC that damp away within a band that 
diminishes in size with mesh refinement. In contrast, the AHOT-CO solution is highly 
accurate below the diagonal joining the lower-left corner to the upper-right corner; 
it suffers its worst error, a smearing of the sharp ,edge of the flux discontinuity, in a 
tight band around the SC. 
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The corresponding solution error distribution for the DD and AHOT-CO meth- 
ods, computed as the difference between each method’s .cell,aver,aged flux and the 
exact cell-averaged flux by cell is illustrated as color-coded plots in Fig. 5. Since 
the AHOT-NO equations approach the DD equations in the fine mesh,.limit, their 
solutions are visually identical for sufficiently high n; hence plots of the AHOT-NO 
solution are not shown in, Figs. 4 and 5. 

Another way to look at the pointwise accuracy of numerical solutions is to 
examine the fraction of the number of cells as a function of, error in the cell-averaged 
flux. This is depicted in Fig. 6 for the case $Q = 0, $s = 1 solution of the DD, and 
AHOT-CO methods, with n=9, 12, and 15. These plots indicate that the fraction 
of cells with smaller cell-averaged flux error increases with mesh refinement for both 
methods, but, in general, AHOT-CO produces a larger fraction of cells where the 
solution is highly accurate than does the DD metho,d . ..- _. ,, I _y_^l_ ,,_ 

5 CONGLUSION 

We examined variants of Larsen’s benchmark problem that introduce solution 
discontinuity across the singular characteristic via unequal incoming edge-averaged 
fluxes. We derived exact formulas for the cell-averaged flux on a uniform mesh cover- 
ing the rectangular region comprising Larsen’s benchmark prqblem, but with arbitrary 
incoming edge-averaged fluxes and used them to determine cell-wise errors and error ,----,w- _ “, “.-- . . ~.“._. -I- “,b. y.~..~*.-“p.“~I,.\~. _~r 
norms for~,the DD, AHCT-N6; and AHOT-CO methods.. ~~.~cal..errdr’a_nalysis of WDD 
methods, including DD and AHOT-NO, indicates that the solutions.do not, converge 
to the locally exact value with diminishing cell size if theincoming edge-averaged 
fluxes are not equal. Indeed the cell-wise results confirm this behavior along the SC; 
the WDD solution converges with mesh refinement away from the SC because the 
inequality of the incoming edge-averaged fluxes diminishes for each computational 
cell. 

The large error in the locally exact AHOT-CO method solutions leads us to 
conjecture that it is dominated by numerical diffusion that tends.to smear, the sharp 
edge of the solution discontinuity over outgoing edges. In fact the similar error values 
observed for all three methods with mesh refinement in the cases with solution dis- 
continuity leads us to further conjecture that the cell-averaged flux error is dominated 
by numerical diffusion effects, rather than local error effects, in general. This might 
add credence to high order methods that attempt to improve the flux representation 
on cell edges. 
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