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ABSTRACT 

A formalism is derived for the Arbitrarily High Order Transport (AHOT) 
method of the Characteristic type (AHOT-C) in three-dimensional geometry for un- 
structured grids (UG). The resulting equations are implemented in a computer code, 
AHOT-C-UG, in the C language. The transport solution on the unstructured grid 
is stored as two inter-linked lists of cell and face flux moments. This arrangement 
allows the transport sweep to select the order of evaluation dynamically so that the 
typical recursive ordering of the discrete ordinate’s mesh sweep is maintained without 
the need to store a precomputed order for each ordinate. The dynamic cell sweep or- 
der thus reduces the memory demand without excessively increasing execution time. 
Comparison of AHOT-C-UG’s solutions to fine mesh TORT solutions illustrate high 
accuracy of the new method. In particular, large half a million cell numerical tests 
illustrate a convergence rate for the error as O(h), where h is a measure of the longest 
edge in the tetrahedral grid. Execution time on a 700 MHz Intel Pentium III running 
Linux 2.4.0 is less than 0.2 ms per cell-angle sweep operation. Also the total memory 
requirement is of the order of 240 bytes per tetrahedral cell, where 64-bit arithmetic 
precision is employed throughout. 



1 INTRODUCTION 

Discrete ordinates methods have been developed primarily for one-, two-, and 
three-dimensional orthogonal coordinate systems. This requires, approximating the 
geometry of the physical system which seldom coincides with an orthogonal coor- 
dinate system in practical applications. Furthermore, in curvilinear coordinates an 
additional approximation is introduced to deal with the so-called redistribution term, 
which is not completely understood, and whose effect on the solution accuracy is not 
easily accounted for. These two shortcomings of discrete ordinates codes are greatly 
reduced by employing a three-dimensional irregular, or unstructured, grid as has 
been accomplished in recent years by a few research groups. This permits piecewise 
plane representation of curved interfaces, rather than staircasing, resulting in better 
geometric approximation, elimination of the redistribution term, and potentially a 
reduction in the number of computational cells. Nevertheless, several difficulties have 
to be overcome to reach this objective. First, the spatial discretization procedure over 
cells whose boundaries do not coincide with constant surfaces in an orthogonal coor- 
dinate system must be developed. While this has been done in the framework of finite 
element methods in other fields, it is still rather new in the neutron transport field. 
Based on existing experience it is clear that the Characteristic method approach is 
most likely to succeed as it does not require taking transverse moments of the trans- 
port operator, like Nodal methods, which is not easy to generalize to unstructured 
grids. Second, it is highly desirable to develop higher order spatial approximation 
methods. Arbitrarily High Order Transport Characteristic (AHOT-C) methods have 
been developed for two-dimensional Cartesian grids (Azmy, 1992). Here we extend 
this formalism to unstructured, three dimensional grids. Earlier studies have demon- 
strated the superiority of high order methods in terms of providing higher pointwise 
accuracy on a given mesh, ensuring solution positivity in highly absorbing materials, 
and improving computational efficiency, both in terms of execution time and memory 
requirement. 

f--Y 

The so-derived single cell AHOT-C equations must then be implemented in 
a mesh sweep algorithm to solve multi-cell problems (Suslov, 1997). In an early 
attempt to accomplish this goal the sweep algorithm started by determining the 
order in which the tetrahedral cells are to be swept in a given angular direction 
so that all incoming face angular flux moments would be available from sweeping 
previous cells. It then processed each tetrahedral cell in this order using the single 
cell routines feeding the outgoing face angular flux from one cell to incoming faces 
of adjacent tetrahedrons. The conclusion of that research project was that AHOT- 
C is feasible and valuable in cases where accuracy of the geometric description of 
the problem configuration is important. However, the increase in CPU time and 
memory requirement with increasing problem size and spatial approximation order 
was too large, casting serious doubts on the practical utility of this method. In this 
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work we describe a new algorithm for sweeping 3-Dimensional Unstructured Grids 
as implemented in the AHOT-C-UG -(AHOT-C on Unstructured Grids) code that is 
particularly focused on high computational efficiency, both in terms of execution time 
and memory requirement. We illustrate these features by performing a few numerical 
experiments, and comparing the solutions to those obtained by TORT (Rhoades and 
Simpson, 1997) thus establishing the accuracy and efficiency of the new method and 
algorithm. 

The remainder of this paper is organized as follows. In Sec. 2 we develop 
the previously unpublished AHOT-C formalism for a single, generic tetrahedral cell. 
The dynamic-ordering sweep algorithm used to extend these equations to multi-cell 
unstructured grids is described in Sec. 3. A variety of numerical tests and comparison 
of the new method’s results to traditional methods, i.e. TORT, are presented in Sec. 
4. Our conclusions are summarized in Sec. 5. 

2 THE AHOT-C FORMALISM IN TETR&HEDI&AL GEOMETRY 

Consider the arbitrary tetrahedron with vertices located at ue, e = 0, . . . . 3, 
where ve E {xi, j = 1,2,3) with respect to the global coordinate system x1, x2, x3 
centered at 0. The four faces of the tetrahedral cell ,are P”, k = 0, . . . . 3, whose 
plane equations, o$ xj = /3”, are determined from the vertices v”; note using the 
summation convention. The unit vector along the direction of motion of a neutron 
is fi E {j+ci+, j = 1,2,3) where 23 is the unit vector along the xj-axis, and 
pj is the direction cosine of fi with respect to the xj-axis. The discrete ordinates 
approximation of the neutron transport equation over the tetrahedral cell is given by, 

!a * v $ + OT $ = as+ + s, (1) 
where we have employed standard notation. To develop an AHOT for Eq. (1) we 
utilize the set of polynomial functions, 

A; s fi 2y, 0 5 ij 5 A, 5 E {ij, j = 1,2,3}, (2) 
j=l 

for the order A method. 

The conservation of neutrons to all computed orders over the tetrahedron is 
enforced by multiplying Eq. (1) by X; then integrating over the cell’s volume. This 
results in the relation, 

k=O 

(3) 
j=l 

3 



where we have defined the face-moments of the angular flux by, 

X7 $ dP”, 

f--=y 

(4 

and the cell-moments of the angular flux, scalar flux, and fixed source by, 

respectively, and V is the cell volume. The scalar flux moments are related to the 
angular flux moments by the standard discrete ordinates relationship, 

+ c W&. (6) 
discrete ordinates 

Clearly if 6 lies within the plane of face k the first term in Eq. (3) vanishes for this 
k; also if ij = 0 for any 1 5 j 5 3, the contribution to the summation in the second 
term of Eq. (3) from this j vanishes. 

Typically in the case of an orthogonal grid superimposed on an orthogonal 
coordinate system the face moment of the angular flux, Eq. (4), comprises a double 
integral over two dimensions while the expansion function in the third dimension 
evaluates to a constant on the given face. In tetrahedral geometry this is generally 
not possible. Instead one has to replace one of the expansion functions, say $2, by 
its value on face k in Eq. (4) .to obtain, 

,--Y 
. 

$ = 2 z3F’ y;,,,,,, tik. ^ (21+7rQ)i1+(i2+m2)12+023 ’ f-g # 0, (7) 

ml=0 m2=0 

where the coefficients are given by, 

= is! (pk)a3-m1-m2(-4)m1 (-a;)m2 af f o 

ml! m2! (i3 - ml - T-4 (agm2 ’ 3 * 
(8) 

Equation (7) essentially replaces 3-variable moments over a face of a tetrahedron 
by a linear combination of 2-variable moments over the same face, which we denote 
+f, where i is a two dimensional vector. This greatly simplifies the derivation of 
the relationship between the angular flux moments over the incoming and outgoing 
faces using the characteristic method. It must be emphasized that the choice to 
eliminate the x3-moments in Eqs. (7) is arbitrary; in general Eq. (7) is reformulated 
by eliminating the xj-moment for any j satisfying the condition c$ # 0. It has 
also been observed that it is necessary to compute $J! to order 2A in order for the 
conversion from two-variable moments to three-variable moments to retain complete 
fidelity of the three-dimensional solution. 

f----h 
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The formulas derived so far and in the remainder of this report are relative 
to a local coordinate system for each tetrahedral cell, e.g. its center of mass. The 
cell-moments defined by Eq. (5) are not used’ outside of the cell in w.hich they are 
defined. In contrast the face-moments, Eq. (4), depend on the local origin implying 
they are, in general, not continuous across an interface. Sweeping the mesh along a 
given discrete ordinate, however, requires establishing a relationship between the flux 
moments in cells 1 and 2 whose origins are related by, 

Introducing Eq. (9) into Eq. (4) yields, 

where the coefficients are defined by, 

r 
= il! i2! (-Cd (ix-ml) (q2)(i2-ms) 

mm2 - 
ml! mz! (il - ml)! (i2 - mz)! * 

(11) 

Equation (10) relates the face-moments of the angular flux incoming to the tetrahe- 
dron centered at 02 to the facemoments of the angular flux exiting the tetrahedron 
centered at 01. 

The balance equation, Eq. (3), relates face- and cell-moments over the en- 
tire area and volume, respectively, of the angular flux and fixed neutron source. In 
contrast the characteristic relations, derived shortly, are expressed in terms of local 
expansion coefficients within tetrahedral cells and on their faces because in general 
they do not cover these in their entirety in a continuous manner. Traditionally spa- 
tial moments are preferable to compute because they relate to total quantities; for 
example $6 is easily related to the total reaction rate over a cell., Hence we derive ex- 
pressions for the local expansion coefficients in terms of the corresponding moments. 
Suppose C$!za Qf A: is the local expansion of the angular flux on face k. The local 
face-moment is given by, 

ww 
Had the basis functions been selected to be mutually orthogonal, as indeed is the case 
in Cartesian geometry, the coefficients Y; would have comprised a diagonal matrix. 
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This is not possible here though due to the complexity of constructing an orthogonal 
basis for a general tetrahedron. Hence we write Yk as a linear combination of three 
subintegrals from the z2-axis, for example, to the three edges defining face k on the 
~1, ~2 plane, 

where, for example, for the edge connecting vertex ~0 to vertex zlis 

1 n1+l 
h(~ouo,m) = 

Yii c 
721 (6vo,w )” 

-x 
a3 n=O n! (nl + 1 - n)! (n2 + 1-k n) 

)( (x? - &o,vl~;)("+") [(x;)n2+n+l - (gJ$yz+n+y , 
(14 

and the gradient of this edge is, 

6 = 2: - 2; 
‘vO,‘vl - x; - 2; 

It is worth noting that the next to last term in Eq. (14) is invariant under switching 
the vertices order, while the last term switches sign. It follows that 

y~>(vo,~l) = ~,~~(~1~~0) . (16) 
The proper combination of the yk components in Eq. (13) must be performed in a 
cyclic fashion, the sense of which only determines the sign of Yk. This cyclic sense is n , z 
arbitrary; thus we select it to produce a positive area of face k, i.e. YO” > 0. 

Analogously we derive the relationship of the cell-moments to the local expan- 
sion, 

A 

&ii = c z;+fi Q; , q = h 4, S, (17) 
&‘=o 

where the coefficients 2; are written as the linear combination, 

08) 

and, for example, 

k,(‘Uo,w) = 
%i 

X 

[ 

n3! (nl + n)!(-af)n (-a!j)n’(pk)ns+lFrs-n’ (6,,,,,)“” 
n! n’! n”! (n3 + 1 - n - 72’) ! (nl + 1 + n - n”) ! (722 + 1 + 72’ + 72”) 1 

x (x; _ 6vo,vl x;)nl+l+n-d' [(x;)"2+n'+n"+l _ (x;)n2+n'+n"+l] - 
(19) 
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Here also, 

k,(vo,w) _ _ Zhhvo) 
%=i - 7? (20) 

The proper order of the vertices in Eq. (18) is obtained by selecting a cyclic order on 
k,(vo,m) one face, k, and computing zz 7 **- Then the cyclic sense on each edge of face k 

is reversed and zZ~@~‘~‘), . . . . is computed for k’ # k. The resulting twelve values are 
summed as in Eq. (18) to obtain Za, then all its components’ signs are adjusted so 
that .Z’G > 0. 

To close the AHOT-C’s set of discrete-variable equations additional relations 
among the face-moments of the angular flux are needed. These are obtained by 
integrating Eq. (1) along its characteristic curves, the straight lines defined by, 

+k 
t _ t+k _ xj - xj - 7 

iclj 
j = 1,2,3, (21) 

where t is the characteristic variable, t+k, and zf” are the characteristic, and indepen- 
dent variables, respectively, evaluated on the incoming face k. [Analogous expressions 
can be written relative to the outgoing face k by replacing +k with -k in Eq. (21)]. 
This results in, 

s t $ct> = gp+“) e-e+t+k) + e-“T@-f) s(t’)dt’ , t+k (22) 

where we have denoted the present iterate of the scattering source by s(t’) - os qS(t’) + 
S(t’>, and t is an arbitrary point in the tetrahedron. Evaluating Eq. (22) on the out- 
going face then taking the 5 moment over this face yields, 

where x;, and t; are the incoming face, and volumetric source contributions, respec- 
tively. 

Clearly since the angular flux spatial moments on the incoming face(s) are 
not necessarily the same, the first term on the RHS of Eq. (23) must be evaluated 
once for each characteristic tetrahedron (CT). The CT components of the original 
tetrahedron are defined for a given discrete ordinate fi by the subtetrahedra which 
posses one edge parallel to fi so that only one face in a CT can be incoming. For a CT 
the incoming face flux contribution to the outgoing face flux moments is expressed in 
the form, 

eBgk 2 E fm31 ,m32 *$&,ms2 - 
mgl=O m32=0 

(24) 
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If more than one CT make up the present tetrahedron the contribution of each is 
computed via Eq. (24) then summed. In Eq. (24) the coefficients fmal ,m32 are written 
as linear combinations analogous to Eq. (13), 

*J---S \ 

f m31 n-z32 
- c 2 i’F’ 2 i2c’ J’&~J,&(A;~, A+$) 

(WO,WI) mll=O ml2=0 m21=0 m22=0 

X 
(A;I)~~’ (Akk)“12 (A$..)m21 (A$cc)m22 

mll! m12! mzl! m22! (il - ml1 - m12)! (i2 - m21 - m22>! ’ (25) 

of the terms, 

1 
+ &Lk (4 - 6~0 ,QJ~ 4) nd (&o,wl >” 

A+” a+k 
31 3 n! (7-h - n)! 

which is a recursion relation initialized by, 

(27) 
In Eqs. (25), (26), and (27), Jnl,o is the Kronecker delta, and we have defined, 

a recursion formula initialized by, 

I”>boJ’d(A) - (x:‘n+:, 3 l(x;)n+l ; 
0 

A+” ~ pl (“i”&‘” - $ICaik) 
12 

a3+k (s-k . fj) ’ 

‘B,+” - j.4 (pkcqk - cl!;kp+k) 

a;” (6-” - A) 
, aZk # 0, 

(294 

NW 

(294 

(294 ./ 7 
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with analogous expressions for A$, A$-f , Bzk, n = 2,3. The accumulation of Fc into 
f m31rm32 is conducted in the same way and same cyclic sense as for Y$. 

The volumetric contribution to the outgoing face flux moments is given by, 

eL3 
&-k o fi 2 2 2 Wm31,m32,m33 sm31 ,m32,m33 I (30) 

msl=O mg2=0 m33=0 

where the coefficients wmsl ,m32,m33 are computed in an analogous manner to 2~ de- 
scribed earlier, 

W 

m31,m32,m33 

k=O (vo,vl) ml1 =O mlz=O ml3 LO m2l=O m22=0 &3=O 

~“,(~O,~l) 

il! i2! (~l)il-mll-m12-m13 (~2)~2-m21--m22-m23 

m3l ,m32 ,m33 
mll! ml2! rnl3! m21! m22! m23! 

x (HII)~" (fh2)m12 (%3)m13 (H21)m21 (H22)m22 (ff23)m23 

@I - ml - ml2 - m13)! (i2 - m21 - m22 - m23)! ’ (31) 

a linear combination of the terms, 

n! n’! (n3 - n - n’)! 1 
x F;z;;2+n,j (H31 - H33+;fk , H32 _ H33+;gk ) , n3 > 0, I 

a3 Q3 
(32) 

a recursion relation initialized by, 

k,(vo,‘vl) _ 123 
wh~2>‘4 - H33 

,H33P+“/4” Ff”dr;f$d 
, (H31 - H33+;‘k , H32 

a3 

In Eqs. (31), (32), and (33)) we have defined, 

-1 - 
b-k.6 ’ 

9 

H33 Q;~ 

+k > 
a3 

(33) 

(344 

(344 



/-----. . with analogous definitions for Hnl, Hn2, Hn3, IL,, n = 2,3. 

Conditions are also derived to determine the number of CTs an arbitrary 
tetrahedron is comprised of for a given discrete ordinate, and for computing the four 
vertices of such CT. A mesh sweep then amounts to taking one tetrahedron at a time 
where the flux moments on its incoming face(s) are known from boundary conditions 
or from the previous cell, dividing it into CTs, then applying Eq. (23) to compute 
the flux moments on its outgoing face(s). This is followed by applying the balance 
equation, Eq. (3)) to compute the cell-moments of the angular flux, then Eqs. (10) 
and (11) are applied before proceeding to the next tetrahedron. Upon completing 
the mesh sweep in all employed discrete ordinates the new iterate of the scattering 
source is compared to the previous iterate before testing the stopping criterion. 

3 A COMPUTATIONALLY AND MEMORY EFFICIENT SWEEP AL- 
GORITHM 

The goals for AHOT-C-UG’s sweep algorithm are three-fold: preserve the nat- 
ural discrete ordinates recursive ordering, minimize the amount of additional compu- 
tation needed to compute this ordering and limit the amount of memory required. 
The usual formulation of the discrete ordinates method requires that the particles 
be tracked through the mesh in the direction of their natural flow. This results in a 
computationally efficient method since each value used in the recursion is the most 
recently computed. This is trivial for the finite difference meshes used in most discrete 
ordinates codes since the ordinates are naturally separated into octants by the regular 
mesh organization and they can be processed in a strictly predetermined sequence. 

f---h 

On an unstructured mesh, it is not possible to know a priori the exact order 
in which particles will flow through the cells. For example, a small change in the 
orientation of a face can change it from an outgoing into an incoming face for a given 
ordinate and cell. Therefore, each ordinate will have its own optimal mesh sweep 
order. One approach is to precompute and save the optimal mesh sweep order for 
each ordinate. This approach results in an efficient mesh sweep, however, it has a high 
memory requirement, namely the memory required to store an array of cell indices 
equal to the number of cells times the number of ordinates. 

In (Suslov, 1997)) the cells of the unstructured mesh were actually reoriented 
so that a deterministic order could be be imposed on the mesh. This approach had 
two limitations: it depended on a specific organization of the mesh cells and it was 
computationally expensive to reorient all the cells. For an unstructured mesh repre- 
sentation to be useful, it must not be limited to finite difference-like organizations. 

Instead of precomputing the sweep order, AHOT-C-UG’s sweep algorithm 
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dynamically determines the order for each ordinate on-the-fly throughout the calcu- 
lation. At the start of the mesh sweep for each ordinate, each cell’s faces are marked 
as to whether they are incoming or outgoing relative to the ordinate. Then, all of 
the cells in the problem are placed in a circular queue. The queue is continuously 
traversed and each cell is examined to determine if the angular flux on all of its in- 
coming faces have been computed. When all of a cell’s incoming face moments have 
been calculated, its average moments and outgoing face moments are computed and 
the outgoing faces are marked as having valid moments. The cell is then removed 
from the queue. The data structure which holds the face data is shared by the cells 
which have the face in common, therefore, during the next pass through the queue, 
the adjoining cell’s new incoming flux moments will be available. When the queue is 
empty, the mesh sweep is complete for that ordinate. 

To make the AHOT-C-UG sweep algorithm efficient, the face and cell lists are 
inter-linked. This results in additional memory requirements above those which are 
strictly necessary to represent the unstructured mesh. Per cell and per face memory 
must be used to store both the solution and the.bookkeeping information about the 
mesh. Each face stores a pointer to the next face and a label (these values are only 
used during the input processing phase, however), the indices of the three vertices 
which form the face, its CY and /3 values, the indices of the one or two cells which include 
this face, a flag stating whether the face moments have been computed and a pointer 
to the memory where the face moments are stored. A cell data structure includes a 
pointer to the next cell, the volume of the cell, the index of the material region to 
which the cell belongs, pointers to the four faces which comprise the cell, the indices 
of the four vertices which, form.the.celj, four flags which mark each face as incoming or 
outgoing and pointers to the memory used for the new flux iterate, the old flux iterate 
and the distributed source. The memory requirements are summarized in Table 1. 
Some of the bookkeeping values could be recomputed on-the-fly or eliminated after 
the input processing phase, however, such trade-offs have not been investigated. 

Table 1. Variable Count in Words by Type for the Lowest Order Approximation in 
AHOT-C-UG. 

per index(integer) boolean pointer floating point 
4 Bytes 1 Byte 4 Bytes 8 Bytes 

Face 6 1 2 4 
Cell 5 4 8 1 

On the machine on which AHOT-C-UG was tested, integers are 4 bytes, 
booleans are 1 byte, pointers are 4 bytes and floating point numbers are 8 bytes. 
Thus, the size of the per face structure is 68 bytes (note that the boolean value is 
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rounded up to 4 bytes for alignment purposes) and the size of the per cell structure is 
64 bytes. Noting that the number of face moments goes as the AHOT order plus one 
squared and the number of cell moments goes as the AHOT order plus one cubed, 
the total memory requirement of AHOT-C-UG is: 

Memory (bytes) = F x (68 + (2A + 1)” x 8) + C x (64 + 3 x (A + 1)” x 8)) (35) 

where F, and C are the number of faces, and the number of cells in the tetrahedral 
mesh. 

In the limit of infinitely many tetrahedral cells, there are about twice as many 
faces as there are cells, F = 2 C, so the order of the memory requirement for O-order 
is approximately: 

Memory = 2 x (68 + 1 x 8) + 1 x (64 + 3 x 1 x 8) = 240 (bytes/cell). (36) 

4 NUMERICAL TESTS AND RESULTS 

The AHOT-C method presented in Sec. 2 and the sweep algorithm described 
in Sec. 3 were implemented in a program, AHOT-C-UG, written in the C computer 
language. Although C is not typically used for transport codes, the GNU C compiler 
(GCC) contains a number of extensions to the ANSI C language which simplify its ‘(1 
use in scientific computing. In particular, GCC allows local arrays to be declared with 
variable dimensions and allows multidimensional arrays to be declared as arguments 
to subroutines (features which are indispensable in FORTRAN). AHOT-C-UG was 
compiled with GCC version 2.95.2 and tested on a 700MHz Intel Pentium III system 
running Linux kernel 2.4.0 and GNU C library version 2.1.3. 

The test problem solved here is a simple, uniform cube, three mean free paths 
(MFP) on an edge, with vacuum boundary conditions on all external faces. Scattering 
is isotropic, an Sz quadrature is used and the source is uniform throughout the volume. 
In order to compare to a TORT solution, the cube is broken into subcubes exactly like 
a finite difference mesh and then the subcubes are tessellated into five tetrahedra. The 
basic cube tessellation is depicted in Fig. 1. Note that this tessellation has limited 
symmetry; the tessellation of adjacent cubes must be rotated 90 degrees (along any 
axis) in order for the faces of adjacent cells to coincide. Note, too, that the interior 
tetrahedron has twice the volume of the corner tetrahedra. 

A series of mesh refinements yere studied starting with a 3 x 3 x 3 dis- 
cretization into cubes of one MFP edge length. The cubes were then halved in each 
dimension, resulting in eight new cubes each. The specifics of each test problem are 
given in Table 2. Note that the characteristic length of the edges of the tetrahedra 
are halved in each problem. 
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Fig. 1. Tessellation of the Basic Cube Into Five Tetrahedra. 

For the largest problems, the wall clock times show that the method requires 
about 0.2 ms per cell-angle per sweep. The table also shows that there is about 10% 
growth in the time per cell-angle as the mesh is increased by a factor of eight. This 
demonstrates that the mesh sweep algorithm is relatively insensitive to the size of the 
mesh. 

Comparison between the AHOT-C-UG solutions and the reference TORT solu- 
tion for three representative values of the scattering ratio, c, are presented in Table 3. 
The TORT configuration had 96 mesh cells along each axis and used theta-weighted 
differencing scheme (Rhoades and Simpson, 1997). Both the AHOT-C-UG and TORT 
solutions were integrated on to a one MFP cube mesh for comparison. The results 
show that, as the characteristic length of the AHOT-C-UG mesh cells are halved in 
size, the error is also approximately halved, as expected in the zero-order method. 

Preliminary testing of the high order approximations implemented in AHOT- 
C-UG has just started. While a complete evaluation of these is premature at this 
point, we include in Table 4 results of initial.experiments with the linear order ap- 
proximation for the same test problem described above. These results show a two 
orders of magnitude reduction in the maximum error on the same mesh compared to 
the constant approximation. However, the increase in memory requirement, less than 
a factor of three, and execution time, two orders of magnitude, is rather large and 
will be examined more closely. It is worth noting here that the arbitrary order imple- 
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Table 2. Specifications for Test Problems, Total Memory Requirement, and Total 
Execution Time Divided by the Number of Cell-Angles for AHOT-C-UG with the 
Constant Approximation. 

Mesh Vertices Cells Memory c=O.l c=o.5 c=o.9 
(MBytes) ms ms ms 

Table 3. Maximum % Difference Between AHOT-C-UG with the Constant Approx- 
imation and the TORT Reference Solution with Theta-Weighted Differencing; Flux 
Values Integrated Over 3 x 3 x 3 Cells for Each Mesh. 

Mesh c=O.P c=o.5 c=o.9 

mentation is punitive to execution time for low order approximations, like constant 
and linear, because of the latency attributed to loops over order which is less signifi- 
cant in high order approximations. In other words, we conjecture that fizecl constant- 
and linear-order-approximation versions of AHOT-C-UG would execute faster than 
reported here, but would be limited to the specific order implemented. 

5 CONCLUSION 

We have demonstrated the feasibility and accuracy of the AHOT-C method for 
solving the neutron transport equation on three-dimensional unstructured grids with 
tetrahedral cells. Comparison of the new method solutions obtained with the new 
AHOT-C-UG code to those obtained on very fine meshes with the TORT illustrate 
the high accuracy of our method. The computational resources required by. AHOT- 
C-UG to solve very large problems, i.e. half a million tetrahedra, appears quite 
reasonable both in terms of execution time and memory size. Preliminary results 
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Table 4. Performance of AHOT-C-U@ with the Linear Approximation for the Test 
Problem. 

Mesh Memory c = 0.1 c = 0.5 c = 0.9 
(MBytes) ms % Error ms % Error ms % Error 

3X3X3 0.080 77.0 0.092 77.1 0.082 77.0 0.099 
6X6X6 0.609 77.2 0.035 77.2 0.034 77.1 0.032 

‘I I( 

for high order approximations, already implemented in AHOT-C-UG, demonstrate 
substantial improvement in accuracy in case of the linear approximation. 
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