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Abstract - A persistent problem in the analysis of Lamb
wave signatures in experimental data is the fact that several
different modes appear simultaneously in the signal.  The
modes overlap in both frequency and time domains.
Attempts to separate the overlapping Lamb wave signatures
by conventional signal processing methods have been
unsatisfactory.  As might be expected, the transient nature
of Lamb waves makes them readily tractable to wavelet
analysis. The authors have used the discrete wavelet
transform and the wavelet packet transform to untangle the
Lamb wave signature. Furthermore, both techniques are
realizable in the highly parallel cascaded-lattice
architecture, and are well suited for on-line real-time
instrumentation.  For signatures of Lamb waves captured in
laser ultrasonic data in tailor-welded blanks, this has led to
straightforward detection of weld defects and demonstration
of principle that weld defects can be classified according to
the type of defect as revealed by features in wavelet space.

This technique has considerable commercial value for on-
line monitoring of manufacturing processes.  For example,
laser-based ultrasonic (LBU) measurement shows great
promise for on-line monitoring of weld quality in tailor-
welded blanks.  Tailor-welded blanks are steel blanks made
from plates of differing thickness and/or properties butt-
welded together; they are used in automobile manufacturing
to produce body, frame, and closure panels.  LBU uses a
pulsed laser to generate the ultrasound and a continuous
wave (CW) laser interferometer to detect the ultrasound at
the point of interrogation to perform ultrasonic inspection.
LBU enables in-process measurements since there is no
sensor contact or near-contact with the workpiece.  The
authors are using laser-generated plate (Lamb) waves to
propagate from one plate into the weld nugget as a means of
detecting defects.

I.  INTRODUCTION

An Orthogonal Transient Basis

In many measurement problems, including those
involving the observation of ultrasonic waves propagating
in industrial workpieces, the signals being observed are
oscillating bursts.  This suggests that wavelet analysis
might yield high performance in an on-line instrument.

The wavelet basis function is an oscillating burst, and the
observed signal may be represented very compactly, since
it is very similar to the basis function.  Furthermore, it is
easy to implement in real-time hardware; the discrete
wavelet transform is implemented as a bank of
computationally inexpensive finite impulse response
(FIR) digital filters.

This strategy is of particular importance in the Non-
destructive Evaluation (NDE) community.  Typically, the
analysis of NDE signals consists of performing a Fourier
analysis on the time-series data, and hoping that
something useful appears in the spectrum.  Sometimes it
works, but often the results are disappointing.  Resolving
a finite burst into an infinite sum of infinitely long signals
seems to be a very awkward approach to trying to
understand what information the signal is conveying.  Our
work with laser-ultrasonic Lamb waves demonstrates that
the discrete wavelet provides a powerful method of
analyzing transient signatures in industrial applications.

The idea behind wavelet analysis is that the signal can be
considered as the weighted-sum of overlapping wavelet
functions [1].  In fact, any signal of finite bandwidth and
finite duration can be completely characterized as a
weighted-sum of a finite number of scaled and shifted
versions of the underlying wavelet.  The concept is
similar to Fourier analysis, in which the time series signal
can be considered a weighted-sum of sinusoids at various
frequencies, with the transform coefficients being the
weights. The practical meaning of the wavelet transform
of a signal is that each coefficient of the transform is the
weight, or relative amount of information (or signal
energy) the wavelet at that particular value of scale and
shift contributes to the overall signal.

For many of the results reported in this paper, the wavelet
analysis was performed with the Daubechies 10-
coefficient least asymmetric discrete wavelet [2].
Discrete wavelets are not expressible in closed form.
Plots of the wavelet and its corresponding scaling
function were computed with Daubechies cascade
algorithm, and are shown in Fig. 1.



Fig. 1. Wavelet and scaling functions for 10-coefficient
least asymmetric wavelet.

Suppose that a time-domain input consists of a list of 960
evenly-spaced samples of a band-limited signal.  The
discrete wavelet analysis results in a list of 960 wavelet-
domain coefficients output in response to each 960-
element time series input signal.  As sinusoids at different
frequencies are orthogonal to each other, so also are
scaled and translated versions of these wavelet functions
orthogonal to each other.  This means that Parseval's
theorem holds for discrete wavelet transform; the amount
of energy in the signal in the wavelet domain is exactly
the same as the amount of energy in the signal in time
domain.

The discrete wavelet packet transform is a generalization
of the discrete wavelet transform.  As shown in Fig. 2,
each stage of both the wavelet transform and the wavelet
packet transform consists of an elemental pair of filters
(high-pass and low-pass) that splits the input signal into
two decimated orthogonal components.  The low-pass
output is an approximation of the input signal.  The high-
pass output contains the details of the input signal that are
missing from the approximation.  There is no information
in the two outputs that overlaps, and nothing is lost.  The
input signal can be exactly reconstructed from the two
outputs.

The discrete wavelet transform is implemented by
cascading the elemental filter pairs as shown in Fig. 3,
and the wavelet packet is implemented by cascading them
as shown in Fig. 4.  In the wavelet transform
configuration, the low-pass output of the preceding stage
is fed into an identical copy of the elemental filter pair.
Thus the first approximation is further approximated, and
the second set of details consists of the information
present in the first approximation but absent from the
second.  In wavelet parlance, the output of the first high-
pass filter is the set of wavelet transform coefficients of
the input signal at the finest scale.

Fig. 2. Elemental filter pair

Fig. 3.  Implementation of the discrete wavelet transform

Fig. 4. Implementation of the wavelet packet transform

The output of the next high-pass filter is the set of wavelet
transform coefficients of the input signal at the next finer
scale.  The output of the final low-pass filter is the set of
scaling function coefficients. The cascade can be repeated
as often as necessary, and all the outputs are orthogonal.

There is no fundamental reason why the high-pass output
of the elemental filter pair cannot be split as well, and
nothing to prevent repeating this process as often as
necessary. A filter bank in which at least some of the
high-pass outputs are split into other approximations and
details implements the wavelet packet transform [3].  If
the high-pass output is split whenever the low-pass output
is split, then the system is a complete wavelet packet
transform.  However, it is not necessary for the wavelet
packet to be complete.  A more efficient representation of
the signal may be obtained by leaving out some of the
filter pairs in the cascade.  Irrespective of how many filter
pairs are included, all outputs remain orthogonal.
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For any given input signal, there is an optimal
configuration of filter pairs that represents most of the
input signal information with the fewest output
coefficients.  This is known as the best basis wavelet
packet.  The “best basis” is determined by finding the
configuration of filter pairs whose output has the highest
entropy [4].

Energy is regarded as proportional to the information in
the signal. Suppose that a signal’s energy consists of three
major elements. In addition to the energy of the desired
signal, there may be coherent or non-random signals
produced as undesired, but unavoidable biasing artifacts
due to the hardware.  Also, there may be broadband high-
frequency energy that is typically regarded as random
noise. If these three energies are separable in wavelet
space, then the undesired bias and noise components of
the sensor output signal can be identified and subtracted
from the original sensor output.  What remains is the
signal of interest with its features unobscured.

This version of the wavelet transform takes a one-
dimensional, time-domain signal and projects it into a
two-dimensional domain.  One is a shift dimension,
corresponding superficially to time.  The other is a scale
dimension, corresponding superficially to inverse
frequency.  In practice, the energy in the Lamb wave
signature is concentrated in three distinct regions along
the scale dimension.  There is a high-energy bias,
corresponding to natural responses of the experimental
apparatus.  The bias is concentrated in the coarse scales,
and does not change between trials.  There is low-energy
noise, corresponding to the Johnson noise in the detector
and receiver, and similar mechanisms.  Although the
noise occurs across all scales, the energy in the finest
wavelet scales is dominated by noise.  The information of
interest tends to be concentrated in the middle scales and
to have mid-range intensity.  Due to the orthogonality of
the discrete wavelet, coefficients that are known to
correspond to bias or noise can be subtracted from the
observed data without disturbing information in the
signal.

II. CUMULATIVE ENERGY

The effectiveness of several transforms was compared by
taking the same list of 960 numbers (generated by a laser
ultrasonic sensor), and producing an output list of 960
numbers.  In each output list, there are relatively few big
numbers, and most of the rest are close to zero.  The
useful information is in the few big numbers, and the
others can be zeroed out without much loss of
information.  For each transform output data set, the
cumulative energy function counts up the cumulative
energy in the output coefficients as energy is accumulated
by counting energies, starting from the energy of the
greatest transform coefficient, and moving to the smallest.

For illustration, we have computed the normalized
cumulative energy of the wavelet packet transform, the
discrete wavelet transform, and the discrete Fourier
transform of the same signal from a laser ultrasonic
sensor.  Fig. 5 shows a plot of the first 200 members of
the cumulative energy lists for three transforms. For the
output of the “best basis” wavelet packet transform,
virtually all of the information is contained in the biggest
135 members. The other 825 members are very close to
zero. Also shown in Fig. 5 is the cumulative energy for
the discrete wavelet transform, using the same input
signal, and the same elemental filter pair (Daubechies
least asymmetric 10-coefficient filter and its paraunitary
companion). The other plot in Fig. 5 is for the Fourier
transform; it is clearly far less effective than the other two
at compressing the signal. The “best basis” wavelet-
packet transform is only marginally superior to the
wavelet transform for this data set, and not worth the
added computational cost compared to the wavelet
transform.

III. DONOHO DENOISING

Energy compression is also the basis for Donoho
denoising [5].  Donoho says that for a wavelet transform
of a noisy signal, the big coefficients hold the information
and the small coefficients hold the noise.  Since the
wavelet compresses the information, a signal spread out
in the time domain will be very compactly represented in
the wavelet domain.  On the other hand, noise is
approximately evenly randomly distributed throughout
both the wavelet and the time domains.  Suppose we try
to denoise with the best basis wavelet packet, by
declaring that the biggest coefficients holding 90% of the
total energy of the signal constitute the "information."  In
the upper plot of Fig. 6, the jagged line is the original
time series. The smooth line is constructed by taking the
wavelet packet transform and identifying and retaining
the 9 coefficients that hold 90% of the energy in
transform space, and zeroing-out the 951 coefficients that
contain the other 10% of the energy.  The “denoised” time
series is recovered by taking the inverse wavelet packet
transform of the zeroed-out list.  Suppose we try to
denoise with the best basis wavelet packet, by declaring
that the biggest coefficients holding 98% of the total
energy of the signal constitute the “information.”  The
results are seen in the lower plot in Fig. 6.
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Fig. 6.  Denoising a laser ultrasonic signal

The next 26 coefficients contribute mostly noise.  It is
noted that the high frequency features of the time domain
signal are mostly preserved (unlike the more traditional
method of denoising by low-pass filtering), but noise is
substantially reduced.

IV. WHY DOES THIS MATTER?

This matters because we can use it to find features of
flaws as illustrated in Fig. 7.  In Fig. 7a the wavelet
transform was computed for each of 30 signals.  In
wavelet space, the largest coefficients containing the first
99.99% of the signal energies were retained, and the
others zeroed out.  Then each zeroed-out set was inverse
wavelet transformed to recover the approximate time
series.  Then each time series was subtracted from the
corresponding original time series.  The resulting
residuals are plotted below as a density plot.  The vertical
axis corresponds to the 30 spatial locations on the
workpiece from which the 30 time series were collected.
The horizontal axis corresponds to time.  The gray level is
strength.  The residuals are mostly noise. In wavelet
space, the 8 largest coefficients (containing 95-96% of the
signal energies) were retained, and the others

zeroed out.  Then each zeroed-out set was inverse wavelet
transformed to recover the time series.  Then each time
series was subtracted from the corresponding original
time series.  The resulting 4-5% residuals are contour-
plotted below in Fig. 7b. In the same wavelet space, the 9
largest coefficients (containing 96-97% of the signal
energies) were retained, and the others zeroed out.  Then
each zeroed-out set was inverse wavelet transformed to
recover the approximate time series.  Then each time
series was subtracted from the corresponding original
time series.  The resulting 3-4% residuals are contour-
plotted in Fig. 7c.  Note that there is a little difference
between Fig. 7b and Fig. 7c.

The reasonable place to search for features of weld
defects is in the region of the signal between the bias
(biggest eight coefficients of each signal, or thereabouts)
and the noise (smallest 900 coefficients of each signal).
In Fig. 7d, 97.6% of the signal energy is assumed to be
attributed to biasing effects.  This bias is subtracted from
the signal approximation constructed from the wavelet
coefficients constituting of 97.8%, of the signal energy.
This difference constitutes 1.2% of the original signal
energy, and has a fairly dramatic global minimum whose
contour is plotted in Fig. 7d.  This shows up in scan 14,
and time 750.  This corresponds to a pinhole defect in the
weld in the workpiece.

This technique has considerable commercial value for
signal processing in sensors used in on-line monitoring of
manufacturing processes.  The above example, comes
from our research in the manufacture of welded panels for
auto bodies.  For the process to yield a useful product, the
quality of welds must be closely monitored.  Laser
ultrasonics provides a solution to the monitoring problem,
and wavelet analysis makes it practical to use the system
in real-time.

V. CONCLUSIONS AND FURTHER RESEARCH

The authors have detected various kinds of weld flaws in
assorted specimens of tailor-welded blanks using the
methods described in this paper [6]. These results
demonstrate capability to detect localized weld defects
using a computationally efficient algorithm that can be
implemented inexpensively in real-time.
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Fig. 7. Separation of Singal Energies by Wavelets
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