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   Robustness of Friction Mechanisms

 Friction is ruled by robust dynamics

 good qualitative agreement between variety of
models and types of interaction potentials used for a
model

– choice of parameters may be even more important
than the choice of a model !!!

– Initial conditions !



Stick-Slip Dynamics

• Has been observed from the nano - to macro scales - from
the atomic scale to earthquakes.
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Both periodic and chaotic
stick-slip dynamics have
been observed



Different Regimes of Motion

• Single - particle dynamics • Collective dynamics

Very limited correlation
between particles in array

Propagation of well defined
moving structures

High temperature (high noise)
Large external forcing
Small coupling

Small-medium forcing
Large-intermediate coupling
Reasonable noise/disorder

Understanding collective dynamics is the key issue for
controlling and manipulating nano-motion.
It has not been studied before in regard to nano-motion.
We have suggested a link from collective motion to friction.
Some of the predictions based on our approach have already
been successfully tested experimentally.
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Collective Dynamics

Understanding collective dynamics is the key issue

It has not been studied before in regard to friction

There exist a link from collective motion to friction
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Locking of the Temporal and Spatial
Dynamics (Modes)

Small size and confinement
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The outcome  ⇒  Propagation modes

Each mode is characterized by
different frictional behavior

0 2 4 6 8 10 12

0.4

0.6

0.8

1.0
mode # 3

mode # 2
mode # 1

N = 25

m
ax

 a
ve

ra
ge

 v
el

oc
ity

stiffness

H. G. E. Hentschel, F. Family, and Y. Braiman, PRL 83, 104 (1999)



Nonlinear Friction Selection

• Simulations using F-K model show that for intermediate to high values
of the coupling and small applied force

 a series of quantized transitions in the maximum
  propagation velocity occur.

• It is possible to scale the position at which these maximum velocity
jumps occur using the size N of the array and the coupling κ.

• At low enough values of the coupling a transition back to synchronous
motion occurs independent of system size N.

2( ) ~ ( / )m N N mκ



Friction Models

Persson, PRB 55, 8004 (1997)
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Friction is ruled by robust dynamics
Good qualitative agreement between variety of models and types of
interaction potentials used for a model choice of parameters may be
even more important than the choice of a model !!!
Initial conditions !

Persson, PRB 55, 8004 (1997)



Theoretical Modeling

• Phenomenological models
• F-K-Tomlinson model

/ /j j j j j jmX X U X V X fγ η+ = −∂ ∂ − ∂ ∂ + +&& &

m is the mass of the sliding particle
γ is the dissipation coefficient
U is the interaction potential

V is surface potential
f is the external driving force

η is the thermal noise (temperature effect)



Dynamics of Propagating Arrays

We separate the center of mass motion of array from
spatiotemporalfluctuations (which only dissipate energy)

)()()( tXtXtX nn δ+=

where < δXn(t) > = 0 by construction

Keeping fluctuations small, the center of mass obeys

fXXXX n =><−++ ]2/1)[sin( 2δγ &&&
The spatiotemporal fluctuations obey

)  2 ( )cos( 11 −+ +−=++ nnnnnn XXXXXCXX δδδκδδγδ &&&



Assumptions

We assume that the main mechanism for the energy transfer from
the center of mass motion to the spatiotemporal fluctuations in the array is
due to a subharmonic parametric resonance.

We have made a self-consistent approximation by replacing nonlinear terms
by a quasilinear term.
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Resonant Parametric Forcing

We make the Fourier decomposition

Nimn
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and equations of motion for the modes
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where )/sin(2 Nmm πκ=Ω

Shows parametric forcing when 2/ω=Ωm



Spatial Coherence and Mode Selection

If we look for a solution for the m’th mode of the form

)2/sin( mmm tbX βωδ +=

we then find:

Only one mode can exist at a time.

There are N such solutions. Each is spatially coherent with a different
center of mass velocity and different amplitude fluctuations.

As the spatial fluctuations bm increase, phase synchronization decreases,
and so the average center of mass velocity decreases.
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Velocity of the Center of Mass

If we look for a solution for the m’th mode of the form

)2/sin( mmm tbX βωδ +=

and the center of mass motion is
described by

)sin(0 tBtXX ωω ++=
then the velocity of the center of

mass is
0 2 4 6 8 10 12

0.4

0.6

0.8

1.0
mode # 3

mode # 2
mode # 1

N = 25

m
ax

 a
ve

ra
ge

 v
el

oc
ity

stiffness2 2( / ) /[(1 /2) /8]m mv f B bγ= + +

H. G. E. Hentschel, F. Family, and Y. Braiman, PRL 83, 104 (1999)



Sliding on Disordered Substrate

Friction coefficient can be significantly reduced
 (by orders of magnitude) when sliding on irregular surfaces
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  Key Issue ⇒   Phase Synchronization

The better the array is phase synchronized - the faster it moves !
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Phase Synchronization

We define phase synchronization as the inverse of the fluctuations σ
from the center of mass motion
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Disorder - Enhanced Synchronization

Time series of positions of all the particles in N=25 particle array for:
( a ) the identical array; ( b ) 20% of disorder;
( c ) 25 % of disorder; ( d ) 30 % of disorder

(a) (b)

(c) (d)

Vcm=0.05Vcm=0.05

Vcm=0.146
Vcm=0.258



The position of a particle #12
 in array as a function of time.

The bottom curve corresponds to
the identical array.

The middle curve corresponds to
to the arrays with 20% of

disorder,
The top curve corresponds to the

array with 30% of disorder.

The inset shows the average
velocity of the center of mass as

a function of the amount of
disorder

Sliding is Faster on Disordered Surfaces

Y. Braiman, F. Family, H. G. E. Hentschel, 
C. Mak, and J. Krim, PRE 59, R4737 (1999)



Time series of the fluctuations
from the center of mass f(σ) for
different amounts of disorder.

The left-hand part of the plot
corresponds to the identical

array.
 The middle part corresponds to

σ=15%.
The right-hand part corresponds

to σ=30%.
The inset shows the average
fluctuations from the center of

mass as the function of the
velocity of the center of mass.

Sliding is Faster for a Better Synchronized Array

Y. Braiman, F. Family, H. G. E. Hentschel, 
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Cumulative slip time distribution
for the array.

The bottom curve corresponds
to the identical array.

The middle curve corresponds to
σ = 2.5%.

The top curve corresponds to
σ = 5%.

Disorder Induced Depinning

Y. Braiman, F. Family, H. G. E. Hentschel, 
C. Mak, and J. Krim, PRE 59, R4737 (1999)



Friction Control by Surface Vibrations
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Theoretical Demonstration of the Effect of
Surface Vibrations
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Velocity is controlled by the amplitude of surface vibrations.
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Transition to Sliding Behavior
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Summary

• Nanoscale arrays can exhibit a variety of modes of motion with
different degrees of spatial coherence which affects frictional
properties of the array

• Spatiotemporal fluctuations in small discrete nonlinear arrays
affect the dynamics of the center of mass. Here we presented
numerical evidence indicating that phase synchronization is
related to the frictional properties of such sliding atomic scale
objects.

 

• We discussed mechanisms and implementation of how the
resulting atomic scale friction can be tuned with noise,
quenched disorder, and surface vibrations.
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