
On Design and Performance of Metafusers

Nagi Rao
(Nageswara S.V. Rao)

Center for Engineering Science Advanced Research

Computer Science and Mathematics Division

Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831-6355

email: raons@ornl.gov

May 17, 2001
Workshop on Estimation, Tracking and Fusion

Monterey, CA

This research is sponsored by
Ballistic Missile Defense Organization
OÆce of Naval Research
U.S. Department of Energy

OÆce of Science, Engineering Research Program

1



Presentation Outline

1. Problem Formulation

1.1 Single Classi�er Performance

1.2 Finite-Sample Limitations

2. To Fuse or Not To Fuse

2.1 Set of Classi�ers

2.2 Fuser Performance Conditions

3. Metafusers

3.1 Fusion of Fusers

3.2 Practical Paradigm

4. Conclusions

2



Classi�er

Deterministic Boolean Classi�er: � : <d 7! f0; 1g
Feature vector: X
Output: Y

Probability of Misclassi�cation:

L(�) =
Z
X

If�(X)6=Y gdPX;Y ;

where ID(x) is the indicator function of set D � <d

ID(x) =

8<
: 1 if x 2 C
0 otherwise.

Objective:
Achieve low values of L(:) based on �nite sample: (X1; Y1); : : : ; (Xn; Yn)
independently and identically distributed according to
unknown distribution PX;Y
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Bayesian Classi�er

Achieves lowest error L(:) of any deterministic classi�er
Bayes error L� = L(��),

��(x) =

8<
: 1 if PX;Y [Y = 1jX = x] � PX;Y [Y = 0jX = x]
0 otherwise

Notes:
1. If PX;Y is not known, �� cannot be computed
2. Regression estimation subsumes classi�cation problem
2. Using �nite sample, only an approximation to �� in possible.
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Performance of Classi�ers

Classi�er: Based on sample with unknown distribution

Best is Known in the Limit: n!1
Under asymptotic consistency criterion:
| universally consistent methods exist: L(�)! L(��) as n!1

e.g. k-nearest neighbor rule, histogram estimation
|no need to fuse classi�ers; just pick one of the above to achieve L(��)

In practice,
we often have a �nite sample
| no universal �nite sample results

� no best classi�er exists for �nite sample size
� di�erent classi�ers perform well under di�erent conditions

Basic Question:
Can �nite sample performance be improved by \fusing" classi�ers ?

{ Yes, under fairly general conditions and with some e�ort
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Finite Sample Limitations of Classi�ers

gn: classi�er based on n-sample
Error probability:

Ln(gn) = PfY 6= gn(X)jDng

Average error probability: ELn(gn) = L(gn).

Devroye (1982):
For � > 0, an integer n and classi�cation rule gn
there exists a distribution (X; Y ) with Bayes risk L� = 0 such that

ELn(gn) � 1=2� �

Informally, for any classi�er, there is a distribution (X; Y )
for which it is almost as bad as a random guesser,
although data is perfectly separable by Bayes classi�er.

Implications:

(1) A classi�er that performed well on previous data sets can \fail" on next
data set.

2) No classi�er can perform uniformly better than any other
even if latter is only marginally better than a random guesser.

Result: Quest for better classi�ers continues as newer data sets are encoun-
tered.
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Vapnik-Chervonenkis Theory

General theory with performance guarantees based on �nite samples

Hypothesis space: H = f� : <d 7! f0; 1gg
Examples: feedforward neural networks, potential functions

Empirical Error of Misclassi�cation:

L̂(�) =
1

n

nX
i=1

If�(Xi) 6=Yig:

Let �̂ minimize L̂(:) over H.
| �̂ : empirically best hypothesis

Basic Result: If H has �nite Vapnik-Chervonenkis dimension VH,

P n
X;Y

"
L(�̂)�min

�2H
L(�) > �

#
� Æ

for suÆciently large n irrespective of distribution PX;Y .

|Informally, error of �̂ is within � of best error min
�2H

L(�)

with probability 1� Æ.

Note:
Di�erent H's result in di�erent best within-class classi�ers.
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Single Classi�er: Performance Bounds

Sample Size Estimate: For suÆciently large sample size n we have

P n
X;Y [L(�̂)�min

�2H
L(�) > �] < Æ;

irrespective of PX;Y

Generic form for Æ showing explicit dependence:
from classi�er family G based on n-sample

Æĝ(�; n;G) = �ĝ(n)e
�a�2n

Examples:

H �ĝ a

�nite jHj 1

128

linear combinations with d terms 8nd + 1 1

128

vector space with dimensionality dv 8ndv + 1 1

128

threshold neural networks 8(ne)kd+2k+1 1

128

with k hidden nodes and d inputs
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Performance of Set of Classi�ers

Classi�ers:
NC hypothesis classes: H1;H2; : : : ;HNC

Best within class classi�ers:

��i = min
�i2Hi

L(�i)

�̂i = min
�i2Hi

L̂(�i)

If single classi�er is chosen, lowest achievable error is

NC

min
i=1

L(��i )

But, such selection is not possible by �nite sample.

Performance Equation:

Given classi�ers: �̂1, �̂2, : : :, �̂NC
:

Classi�ers can be correlated in an arbitrary manner:
For empirically best classi�er:

�̂min = argmin
i
L̂(�̂i)

we have

P n
X;Y

"
L(�̂min)�

NC

min
i=1

L(��i ) > �

#
< Æ�̂1(n) + Æ�̂1(n) + : : :+ Æ�̂NC

(n):
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Fuser Computation

Family of fuser functions:
F : ff : [0; 1]NC 7! f0; 1gg

Fuser output: f(Z) = f [�̂1(X); �̂2(X); : : : ; �̂NC
(X)]

. . .

Classifier 1

Classifier N

Classifier 2 Fuser

Figure 1: Single fuser.

Fuser Computation:
Split n-sample into two disjoint n1- and n2-subsamples;
Two steps procedure:
Step1: Trained the classi�ers with n1-sample:
Step2:
(a) generate a training set (Z1; Y1), (Z2; Y2), : : :, (Zn2; Yn2)
where Zi = (�̂1(Xi); �̂2(Xi); : : : ; �̂N (Xi)), using n2-sample, and

(b) minimize empirical error over F based on this training set.
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Relative Performance of Fuser

Error probability of fuser:

LF (f) =
Z
Iff(Z) 6=Y gdPX;Y :

Fuser f̂ provides a better guarantee:
under the condition

ÆF (n2)Æ�̂1(n) + Æ�̂1(n) + : : :+ Æ�̂NC
(n):

where

P n
X;Y

"
LF (f̂)�

N
min
i=1

L(��i ) > �

#
< ÆF (n2):

Note: Fuser class is �nite, i.e. jFj � 22
N
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Isolation Fuser

Optimal fuser: f � minimizes LF (:) over F
Optimal empirical fuser: f̂ minimizes L̂F (:) over F .

L̂F (f) =
1

n

nX
i=1

[f(Zi)� Yi]
2:

Isolation Property:
F contains the following N functions:
for all i = 1; 2; : : : ; N we have fi(z1; z2; : : : ; zN) = zi.

Theorem 1. Finite fuser class:

Classi�ers �̂1; �̂2; : : : ; �̂NC
chosen from H1;H2; : : : ;HNC

.
Finite fuser class F has isolation property.

Then fuser f̂ trained on n2-subsample of n-sample,
provides better guarantee than the best classi�er under the condition

jFj � 1
2

NP
i=1

Æi(n)e
a�2n2:
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Proof of Theorem 1

We �rst have

LF (f
�) = min

f2F

Z
[f(Z)� Y ]2dPX;Y �

NC

min
i=1

Z
[fi(Z)� Y ]2dPX;Y

�
NC

min
i=1

Z
[��i (X)� Y ]2dPX;Y =

NC

min
i=1

Z
If��i (X)6=Y gdPX;Y =

NC

min
i=1

L(��i )

where the third step is a direct consequence of the isolation property. Con-
sequently the event

fLF (f̂)�
NC

min
i=1

L(��i ) > �g implies the event fLF (f̂)� LF (f
�) > �g. Thus we

have

P n
X;Y

"
LF (f̂)�

NC

min
i=1

L(��i ) > �

#
� P n

X;Y

�
LF (f̂)� LF (f

�) > �
�
� 2jFje�a�

2n2

where the last step is due to the �niteness of jFj
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In�nite Fuser Classes

Fuser Class: F : ff : [0; 1]NC 7! [0; 1]g
Fuser f̂ 2 F is characterized by Æf̂(n) = �f̂(n)e

�a�2n.

Theorem 2. In�nite fuser class:

Classi�ers: �̂1; �̂2; : : : ; �̂NC
chosen from H1;H2; : : : ;HNC

If the fuser class F satis�es the isolation property,

then fuser f̂ , trained on n2-subsample of n-sample,
provides better guarantee than the best classi�er under

�f̂(n2) �
NCP
i=1

��̂i
(n)e�a�

2n1:

To fuse or not to fuse:

Decided by sample size: n1 <
1
a�2 ln

2
6664
NCP
i=1

�
�̂i
(n)

�
f̂
(n�n1)

3
7775 :

Informally speaking,
Fuser class must be:
(i) capable of \picking" best classi�er, and
(ii) small enough to be done eÆciently
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Finite-Sample Limitations of Fusers

A fuser is also a classi�er - subject to the fundamental limitations
{ there is no single best fuser
{ newer data sets might require new fusers

myriad of available fusers: nearest neighbor, sigmoid networks,
vector space methods, isolation fusers and projective fusers

What have we done ?
Started out to deal with multiple classi�ers,
but ended up creating more fusers !
{ Fusion engineer's job is more diÆcult now
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Metafuser

. . .

Classifier 1

Classifier N

Classifier 2

Fuser 1

 

Fuser M

Fuser 2

. . . 

Metafuser

Extension of fusion concept one level higher: metafuser fuses fusers

Computation of Metafuser:
Split n-sample into n1-, n2- and n3-subsamples
1. Train NC classi�ers with n1-subsample
2. Train NF fusers with n2-subsample
3. Train metafuser using n3-subsample
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Performance of Metafuser

Theorem 3.:

classi�ers: �̂1; �̂2; : : : ; �̂NC

fused by each of fusers: f̂1; f̂2; : : : ; f̂NF
,

fused by a metafuser: �̂
Metafuser class M has isolation property and
one fuser class Fk has isolation property.

The metafuser �̂ has better guarantee than
best classi�er as well as best fuser under the conditions

�f̂(n2) �
NCP
i=1

��̂i
(n)e�a�

2n1=4 for some fuser f̂i, and

��̂(n3) �
NFP
i=1

�f̂i
(n2 + n3)e

�a�2n2=4:

To fuse or not to fuse:
Two inequalities yield sample sizes to train classi�ers, fusers, and metafuser.
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Proof

The �rst condition is same as in Theorem 2 except the precision is �=2
instead of �. Let �� minimize LF (:) over M. Then we have,

P n
X;Y

�
LF (f̂k)� LF (f

�
k ) > �=2

�
� �f̂i

(n2)e
�a�2n2=4

P n
X;Y

�
LF (�̂)� LF (�

�) > �=2
�
� ��̂(n3)e

�a�2n3=4

By the isolation property of M and Fk, we have

LF (�
�) �

NF

min
j=1

LF (f
�
j ) � LF (f

�
k ) �

NC

min
i=1

L(��i ):

Using the �rst inequality and the arguments of Theorem 2, �̂ has better
guarantee than f̂i with precision �=2 and hence with precision �. Since

jLF (�̂)�
NC

min
i=1

L(��i )j � jLF (�̂)�
NF

min
j=1

L(f �j )j+ j
NF

min
j=1

L(f �j )�
NC

min
i=1

L(��i )j

� jLF (�̂)�
NF

min
j=1

L(f �j )j+ jL(f
�
k )�

NC

min
i=1

L(��i )j

we have

P n
X;Y

"
LF (�̂)�

NF

min
j=1

L(f �j ) > �=2
#
� P n

X;Y

"
LF (�̂)�

NC

min
i=1

L(��i ) > �

#
� ��̂(n3)e

�a�2n3;

which yields the second inequality, and ensures that the metafuser`s guaran-
tees is at least as good as that of best classi�er.
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Adaptive paradigm

Scheme:
Employ all available classi�ers and fusers such that
at least one fuser and metafuser have isolation property.

Simple Metafuser: linear combination
{ it can be computed very eÆciently

When a new classi�er becomes available:
Plug it in, and retrain isolation fuser and metafuser;
{ resultant system is at least as good as the current best classi�er

If a new fuser becomes available:
Pulg it in, and retrain the metafuser
{ system is at least as good as that of best classi�er as well as fuser

The guarantee can be incrementally maintained as new classi�ers
and fusers become available

. . .

Classifier 1

Classifier N

Classifier 2

Fuser 1

 

Fuser M

Fuser 2

. . . 

Metafuser
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Conclusions

Summary:
1. Fuser performance is subject to fundamental limitations:
{ can be as ine�ective as a random guesser for newer problems.
{ practitioner must contend with a number of fusers.

2. Proposed metafusers to combine fusers to ensure performance
as good as best fuser.
{ derived design and performance equations

Perspective:
A limitation: utilization of performance bounds
{ bounds could be loose and non-uniform
In practice, bounds are about only performance equations known.

Research Topics:
1. Another Method: use entire sample to train classi�ers and fusers
{ we split sample to train the fusers and metafusers
Derivations are technically more involved
What are the boundaries of performance between two methods ?

2. Generalization of isolation property
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