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Detection Problem: Parallel Sensor Suite
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Detector System: D1; D2; : : : ; DN

Detector: Di

Makes a decision ui 2 fH0; H1g

Fusion Center:

Receives u = (u1; u2; : : : ; uN) outputs either H0 or H1

Notes:

1. Well-studied problem in di�erent domains:
democracy models (Condorcet 1786), composite methods (Laplace 1818)
reliability (von Neumann 1956), pattern recognition (Chow 1965)

Newer applications are being found in diverse areas
2. Of particular importance to distributed sensor systems

Extensively studied over the past decade
Dasarathy (1994), Varshney (1996), Rao (1997)
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Examples

1. Intruder Detection System:

Detectors monitor workspace from di�erent vantage points
Each detector is equipped with sensors, algorithms
H0: intruder is present; H1: intruder is not present
Di: ui is generated probabilistically; Pi(ujH0), Pi(ujH1)
Question: Can individual results be combined to obtain more reliable
decision ?

2. DNA Analysis System: (Uberbacher and Mural 1991)
Each detector is a software program that examines a segment of human
DNA sequence
H0: Segment is protein-coding region; H1: otherwise
Question: Can di�erent programs be combined to obtain improved per-
formance ?

Note:

In the examples, systems are available
| data can be collected.

Example Fusion Rule: (Hashlamoun and Varshney, 1993)
Average-cost criterion is optimized by the likelihood ratio test

T (u) =
P (ujH1)

P (ujH0)
>
�0(C10 � C00)

�1(C01 � C11)
(T:1)

where
Ckj: cost of deciding Hk when Hj is true, k; j = 0; 1
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A Scenario in Fusion Engineering

Practical Fusion Problem

domain−specific knowledge
measurements, 

Fusion Engineer

masurements,
domain data, ...

abstraction

Fusion function under
complete knowledge of
distibutions
               

R(p,u): fusion function with prob. vector p

estimate p and use
it to implement fusion
function

Questions: 1. How to estimate p ?
                    2. What is the resultant performance ?

Existing Solutions
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Motivation and Summary

Majority of Existing Analytical Results:

(i) Fusion functions are derived under complete knowledge of distributions
(ii) Probabilities are explicitly used { their estimators are used in their place.

In Several Practical Cases:

(i) Detector system is available, hence experimental samples can be collected
(ii) Probability distributions are estimated

Question: How can one use analytical results in practical cases ?

Our Results:

Fusion functions for known distributions can be implemented using sample:
(i) simple averages in place of probabilities work well for smooth laws

but not for non-smooth ones;
(ii) for non-smooth case, estimation is based on cost functional

somewhat weaker performance guarantees.
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Empirical Implementation

Fusion rules : expressed in terms of
(i) probabilities p = (p1; p2; : : : ; pn)
(ii) data u = (u1; u2; : : : ; uN)
of the form

R(p; u) > 0; (T:2)

where

decision is

8<: H1 if the inequality is true
H0 otherwise:

If probabilities are known:

R(p; u) for given u can be explicitly evaluated.

Substitution formulation:

1. Estimators p̂i are computer based on iid sample
(u1; H1); (u2; H2); : : : ; (ul; H l)

2. Empirical version given by

R(p̂; u) > 0

is employed

Question: How good is R(p̂; u) compared to R(p; u) ?
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Performance Criteria I

Cost Functional: Expected error of R(p̂; u),

Eu[j�[R(p; u)]��[R(p̂; u)]j] = X
u
j�[R(p; u)]��[R(p̂; u)]jP (u);

where �[x] is 1 if x is non-negative and 0 otherwise.

Performance Criterion I:

R(p̂; u) implements R(p; u) with con�dence 1� � if

P [�[R(p; u)] 6= �[R(p̂; u)]] < �

or equivalently
Eu[j�[R(p; u)]��[R(p̂; u)]j] < �

for suÆciently (but �nite) large sample of size l <1.

Informally,

based on a suÆciently large sample, R(p; u) and R(p̂; u) yield the same result
with a probability of at least 1� �.
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Performance Criteria II

Cost Functional: R(p) minimizes certain cost functional C:
C(R(p; :)) � C(f) for all

Performance Criterion II:

R(p̂; u) implements R(p; u) with precision � and con�dence 1� Æ if

P [C[R(p̂; u)]� C[R(p̂; u)] > �] < Æ

for suÆciently (but �nite) large sample of size l <1.

Informally,

based on a suÆciently large sample, cost of R(p̂; u) is within � of optimal
with probability 1� Æ.
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Independent Hypotheses

Formulation of Chair and Varshney (1986):
(i) independent detectors, (ii) a priori distributions are known
Fusion rule is of the form, for n � 1

nY
i=1

qi �
nY
i=1

si > 0 (T:3:1)

where qi and si are the probabilities of suitable events Qi and Si.

Empirical implementation of (T.3.1):

nY
i=1

�qi �
nY
i=1

�si > 0

where �qi and �si are means of qi and si respectively based on the l-sample.

Result:

For any r > 2, consider a sample of size

l =

2666 1

2�2L
ln(2=Æ)

3777

where �L =

0BB@1 + j
nQ
i=1

�qi�
nQ
i=1

�sij
r+2

1CCA
1=n

� 1: Empirical implementation of
nQ
i=1

qi �
nQ
i=1

si > 0 has con�dence

1=22n � Æ(1� 1=22n)

or
1� 2nÆ
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Neyman-Pearson Test

Thomopoulos et al. (1989): a prori probabilities not known
Fusion rule is Neyman-Pearson test in the form

nY
i=1

qi � �
nY
i=1

si > 0 (T:3:2)

where the positive real � is �xed by the type I and II errors.

Result 1:

Consider a sample of size

l =

2666 1

2�2L
ln(2=Æ)

3777

where �L =

0BB@1 + j
nQ
i=1

�qi��
nQ
i=1

�sij
1+�

1CCA
1=n

� 1: Empirical implementation of
nQ
i=1

qi �

�
nQ
i=1

si > 0 has con�dence con�dence

1� 2nÆ

or
1=22n � Æ(1� 1=22n)
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Lipschitz Test

R(p; u) is Lipschitz with respect to p:
there exists a positive constant L such that

jR(p+�p; u)�R(p; u)j < Ljj�pjj
for all �p, u, where jj�pjj denotes the Euclidean norm of �p in <n.

Note:

1. R(p; u) must be continuous in p
2. L is \upperbounded" by maximum gradient magnitude wrt p

Current Fusion Rules:

1. Large majority of published fusion rules are Lipschitz
2. There are several examples of non-Lipschitz tests

some of these tests can be approximated by Lipschitz tests
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Sample Size for Lipschitz Test

Theorem 1:

Consider a decision rule R(p; u) with Lipschitz constant L.
For any r � 2, given a training sample of size

l =

2666 r2nL2

2(R(�p; u))2
ln(2=Æ)

3777
R(�p; u) > 0 implements the test R(p; u) > 0 with con�dence

1� nÆ

or
1=2n � Æ(1� 1=2n)
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Proof Outline: Theorem 1

1. Conditions sup
i
jpi � �pij < � and jR(p)j � L

p
n�, ensure that R(p; u) > 0

and R(�p; u) > 0 yield the same result.

2. For � = jR(p;u)j
L
p
n , given a sample of size

l =
&
1

2�2
ln(2n=Æ)

'
(3:2:1)

R(�p; u) implements R(p; u) with the required precision.

3. Lower bound for � by noting that 2jR(p; u)j � jR(�p; u)j which implies
jR(p; u)j � 1

r
jR(�p; u)j for any r � 2.

4. The sample size is obtained by using the lower bound jR(�p;u)j
rL
p
n for �.

Note:

Tighter sample bounds may be possible in particular cases,
e.g. Theorem 1
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Neyman-Pearson Test

Particular form of the test, for a positive real � ,

P (ujH1)� �P (ujH0) > 0 (T:3:4)

Let �P (A) be fraction of times event A took place in the sample.

(i) Given a training sample of size

l =

2666 4(1 + �)2

[ �P (ujH1)� � �P (ujH0)]2
ln(4=�)

3777
the empirical rule �P (ujH1)�� �P (ujH0) > 0 implements the test P (ujH1)�
�P (ujH0) > 0 with con�dence 1� �.

(ii) Given a training sample of size

l =

2666 72(1 + �)2

[ �P (u \H1) �P (H0)� � �P (u \H0) �P (H1)]2
ln(8=�)

3777
the empirical test �P (u\H1) �P (H0)� � �P (u\H0) �P (H1) > 0 implements
the test P (ujH1)� �P (ujH0) > 0 with con�dence 1� �.
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Correlation CoeÆcients Method:

Drakopoulos and Lee (1991):
Method of correlation coeÆcients

C = fP [ui1:::uikjHj ]jfi1; : : : ; ikg � f1; : : : ; Ng; j = 0; 1g :
The fusion test is given by

P (ujH1)� �P (ujH0) > 0 (T:3:5)

for suitable � such that for j = 0; 1

P (ujHj) =
X
I�A0

(�1)jI jP
24 Y
i2A1[I

uijHj

35
where Ak = fi : ui = kg and I, of cardinality jIj, varies over all subsets of
A0.

Result:

Given a training sample of size

l =

2666 r223N�1(1 + �)2

[ �P (ujH1)� � �P (ujH0)]2
ln(2=Æ))

3777
the empirical rule implements P (ujH1) � �P (ujH0) > � with con�dence
1=2N � Æ(1� 1=2N).
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Limitation of Means-Based Methods

Existing analytical smaple-based results use smoothness properties

Simple Monitoring Example: R(p; u) does not have Lipschitz property
Monitoring area: two non-overlapping regions
{ two detectors, one for each region

detection if computed probability is above a threshold
Appropriate fusion rule: R(p1; p2) = (p1 > t)

W
(p2 > t)

{ not Lipschitz in p, since it is discontinuous at (t; t).

Explanation:

1. Proximity of mean �p to p is by CLT and not by R(�(p)) to R(p).
2. If proximity of p̂ to p is enforced by R:

performance of R(p̂; :) approaches that of R(p; :).

Example: R(:) is 1 in [p� �; p+ �] and zero elsewhere
As �! 0, R(�p; u) 6= R(p; u) and this method yields very high error.

Motivation: For non-smooth fusion functions
we consider class of functions with bounded variation
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Bounded Variation Property

One-dimensional function h : [�A;A] 7! <.
Partition of [�A;A]: Set of points P = fx0; x1; : : : ; xng such that

�A = x0 < x1 < : : : < xn = A

P [�A;A]: all possible partitions

Bounded-Variation: g : [�A;A] 7! < is of bounded variation:
if there exists M such that for any P = fx0; x1; : : : ; xng, we ha ve

X
(P ) =

nX
k=1

jf(xk)� f(xk�1)j �M:

Multiple Dimensions:

A function g : [�A;A]d 7! < is of bounded variation if it is so in each of its
input variable for every value of the other input variables.

Useful facts:

(i) not all continuous functions are of bounded variation,
e.g. g(x) = x cos(�=(2x)) for x 6= 0 and g(0) = 0;
(ii) di�erentiable functions on compact domains are of bounded variation;
(iii) absolutely continuous functions, which include Lipschitz functions, are
of bounded variation.
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Non-Smooth Fusion Functions

Compute p̂ such that

C(R(p̂)) = min
p2[0;1]n

1

l
C(R(p; ui))

based on the sample. Then R(p̂; u) is used in place of R(p; u).

Theorem 2:

R(p; u) is of bounded variation with respect to p
C �M is of bounded bounded variation.
Given a sample of size

s =
256M2

�2

"
4n ln

 
8eM

�

!
+ ln(16=Æ)

#
;

we have
P[C(R(p̂))� C(R(p)) > �] < Æ:
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Proof of Theorem2: Preliminaries

For G = fg : X 7! <g and S = fx1; x2; : : : ; xmg � X:

Pseudo-shattering: S is pseudo-shattered by F
if there are real numbers r1, r2, : : :, rm
such that for each b 2 f0; 1gm there is a function g0 in G with

sgn(fb(xi)� ri) = bi

for 1 � i � m.

Pseudo-Dimension: G has pseudo-dimension d: maximum cardinality of a
subset S of X that is pseudo-shattered by G

Examples: Function classes with known pseudo-dimension
1. Feedforward sigmoidal neural networks
2. Vector spaces
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Proof of Theorem2: Outline

Denote C(R(p; :)) by C(R(p; :))
CR(p) is of bounded variation with respect to p. Consider the function class

CR = fCR(q; :) : q 2 [0; 1]ng:
Let dCR(q) = 1

lC(R(p; u
i):

From Vapnik (1982), we have

P [CR(p̂)� CR(p) > �]

� P

24 sup
q2[0;1]n

jCR(q)� dCR(q)j > �=2

35 :
From Haussler (1992), we obtain

P [CR(p̂)� CR(p) > �]

� 2E [2min(N (�=2; CR; dL1))] e
��

2
l

256M2 :

We next show that

N (�; CR; dL1(P )) � 4

 
4eM

�
ln
4eM

�

!2n
;

for any P , which yields the required sample size.

21



Proof of Theorem2: Outline

CR(:) = C(R(:)) is of bounded variance:
represented as a sum of two monotone functions CR = R1 +R2.
For i = 1; 2, let Ri = fRi(q; :) : q 2 [0; 1]ng;
functions composed by a monotone function Ri(:) with identity I(:)

q forms a linear space: by Anthony and Bartlett (1999)

Pdim(Ri) = Pdim(fqg) � Pdim([0; 1]n) = n:

From Haussler (1992)

N �
�;Ri; dL1(P )

� � 2
 
2eM

�
ln
2eM

�

!n

for any measure P .

Since CR = R1 +R2 we obtain

N �
�; CR; dL1(P )

�
� N (�=2;R1; dL1(P ))N (�=2;R2; dL1(P ))

� 4
 
4eM

�
ln
4eM

�

!2n

for any P .
The sample bound follows from

Æ = 2E [2min(N (�=2; CR; dL1))] e
��

2
l

256M2

� 16
 
8eM

�
ln
8eM

�

!2n
e
��

2
l

256M2
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Simulation Results: Decision Fusion

Fuser

.   .    .

Detector N

Detector 2

Detector 1

x

y

y

y

(1)

(2)

f(y)

(N)

Five detectors Di, i = 1; 2; : : :5
Input: Boolean with equal probability

Detector Di:

output is input with prob. 1� i=10;
opposite with prob. i=10;

Detectors are statistically independent.
�0 = �1 = 1=2
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Simulation Results: Decision Fusion

Sensor Probability of

Correct Classi�cation

S1 90.0%

S2 80.0%

S3 70.0%

S4 60.0%

S5 50.0%

Note:

1. Best classi�er:
correct classi�cation probability - 90%

2. Bayesian fuser:
empirical performance - 91%

3. Both nearest neighbor and empirical fuser also achieve 91% correct classi-
�cation.
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Decision Fusion (Cntd.)

Percentage of correct classi�cation:

Sample Size Test set size Bayesian Fuser Empirical Decision Nearest Neighbor Nadaraya-Watson

100 100 91.91 23.00 82.83 88.00

1000 1000 91.99 82.58 90.39 89.40

10000 10000 91.11 90.15 90.81 91.42

50000 50000 91.19 90.99 91.13 91.14

Bayesian Fuser: Uses probability distribution
(Chair and Varshney 1986)

Empirical Decision
Nearest Neighbor
Nadaraya�Watson

9>>>=>>>; Use only the sample
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Figure 1: Relative performance of the Bayesian fuser and empirical fuser with training.
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Decision Fusion (Cntd.)

Percentage of misclassi�cation:

Sample Size Test set size S1 S2 S3 S4 S5 Nadaraya-Watson

100 100 7.0 20.0 33.0 35.0 55.0 12.0

1000 1000 11.3 18.5 29.8 38.7 51.6 10.6

10000 10000 9.56 20.19 30.38 39.82 49.68 8.58

50000 50000 10.038 20.136 29.854 39.904 50.050 8.860

Note:

The fuser performs better than the best estimator S1 after 1000 examples.
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Conclusions

Summary:

For a very general class of fusion rules,
existing ones can be converted into sample-based ones.

Next Step: Sample size can be sharpened by using domain speci�c data.

Future Directions:

1. Empirical estimation methods represent other extreme:
{ operate directly on the data (no estimation of prob.)
What are boundaries of performance between two methods ?

2. Combination of detection and tracking in a close-loop

28


