
Robust Control of Realistic Quantum Gates 
 
                                Rafael B. Perez and Vladimir A. Protopopescu 
 
                                              Center for Engineering Science Advanced Research 
                                                   Computer Science and Mathematics Division 
                                                           Oak Ridge National Laboratory 
                                                               Oak Ridge, TN 37831-6355 
                                                                         vvp@ornl.gov 
 

Abstract: We consider a generic NOT gate in contact with the environment  
and design and implement a control scheme to eliminate decoherence.  
Simulations show efficiency and robustness under a broad range of realistic 
conditions. 

 

Background.  Quantum computing is one of the most promising areas to have emerged in 
science in the last decade [1 and references therein].  If realizable, quantum computers would 
solve large quantum system simulations and (specific classes of) hard computational problems 
much more efficiently than classical (digital) universal computers.  Quantum computation 
relies on the existence, persistence, and special features of entangled states [1], which are the 
exclusively quantum and highly counterintuitive result of the linear superposition principle in 
quantum mechanics.  According to this principle, electrons, photons, neutrons, and even 
atoms and molecules, may be in more than one state at the same time.  Formally, 
entanglement means that, in general, the wave function of a many particle system may not be 
factored into a product of single particle wave functions.  As a result, (i) the whole system 
shares quantum correlations that cannot be described or prescribed in a classical probabilistic 
framework and (ii) these quantum correlations may – in principle – persist at large distances, 
with strange and powerful epistemological and practical consequences, amongst which 
teleportation and quantum computation stand out.  The main obstacle that prevents the 
observation and exploitation of entanglement at the macroscopic scale and the realization of a 
practical size, room-temperature quantum computer is the difficulty to generate and especially 
maintain quantum correlations for a large number of entangled particles.  Indeed, due to 
uncontrolled and/or unaccounted for interactions with the environment, entangled pairs lose 
their entanglement (i.e. the information about the quantum phases) and become a (random) 
statistical population.  This effect, called decoherence [1, 2], is the major stumbling block on 
the road to achieving (sufficiently) fault tolerant quantum gates and eventually building a 
useful, scalable quantum computer.  Several control schemes have been proposed to eliminate 
or reduce decoherence, but usually they are either theoretical proposals or very carefully 
monitored  implementations in a few atoms, at extreme conditions, and for very short times.  
Optimal control [3] appeals through its general and systematic approach, but is both 
impractical, since calculations cannot be realized on line, and unnecessary, since for the 
envisaged applications, ability is important, rather than cost.  Passive stabilization relies on 
decoherence free subspaces [4], which – due to special symmetry properties – are 
dynamically decoupled from the environment; however these subspaces are difficult to realize 
experimentally.  Finally, a quantum (as opposed to the obviously impossible classical) 
feedback scheme has been recently proposed, but only for closed systems [5].  Here we report 
the design and implementation in a realistically simulated NOT gate of a control approach 
that has common features with the open-loop and bang-bang schemes [6].   

Modeling the NOT Gate.  Since a universal quantum computer can be assembled from a 
sufficiently large number of either NOT and CNOT gates or Toffoli gates [1], it seems 
reasonable to start by fighting decoherence at the gate level first and, if successful, try to scale 



up the procedure.  NOT gates have been realized in various two-level systems [1], although 
implementations in three- or multi-level systems can be envisaged and sometimes turn out to 
be desirable [3].  Here we consider the NOT gate as a generic two-level system in interaction 
with its environment (bath), described by a bosonic gas [7,8].  The complete Hamiltonian is 

S B IH H H H= + +  , where SH  is a 2× 2 matrix describing the transition between the two 
levels of the NOT gate, 

B
H  is the Hamiltonian of the bath, described by an infinite sum over 

the free bosonic modes, and IH  is the interaction Hamiltonian.  Here we take IH = 
x z

a bσ σ+ ; 
for this model, the inclusion of 

y
σ  in the interaction Hamiltonian is not necessary, since it 

yields essentially the same result as xσ . The evolution of the whole system under the 
complete Hamiltonian H  is, of course, unitary, but following the evolution of the two-level 
system (NOT gate) alone means that the environment is “traced out” (i.e. ignored).  This 
operation is accompanied by a certain loss of information about the two-level system [7,8] 
and manifests itself as adiabatic and/or dissipation-induced decoherence.  These two 
processes are produced by different interactions (which correspond to setting 0, 0,a b= =  
respectively) and take place at different time scales.  Typically, the adiabatic decoherence sets 
in very quickly, modifies only the non-diagonal elements of the density matrix, and leads to 
loss of information about the relative phases; the dissipation-induced decoherence sets in at a 
much slower rate, is accompanied by loss of energy (particles), and results in an alteration of 
both moduli and phases of all the elements of the density matrix. In either case, the unitary 
character of the quantum evolution is lost and has to be restored, since any quantum 
computation is nothing but a sequence of unitary transformations.  Moreover, this restoration 
has to be achieved as robustly, efficiently, and economically as possible. 

Open Loop Control of the NOT Gate.  In this proof-of-principle implementation, we restrict 
ourselves to: (i) two limit cases, namely 0, 0a b= = ; (ii) first order perturbation theory; and 
(iii) a simple form of the dispersion relation for the bath (the so-called Wigner-Weisskopf 
approximation).  In the absence of interactions, the evolutions of the bath and two-level 
system are decoupled and unitary.  In the presence of interaction, the evolutions of the two 
parts are coupled and by tracing out the bath, the “reduced” evolution of the two-level system 
becomes non-unitary.  In principle, knowing the interaction, the departure from unitarity (i.e. 
the decoherence constants) can be calculated as follows.  From the Schrödinger equation one 
derives an evolution equation for the complete evolution operator, ( ) exp( )U t itH= .  By 
passing to the interaction picture and tracing out the environment, one obtains the evolution 
equation for the “reduced” evolution operator of the two-level system, 

~

( )
S

U t .  Of course, the 
solution of this problem can be found only approximately, within various orders of 
perturbation theory.  Once 

~

( )
S

U t  is determined to the desired order, one can calculate the 
corresponding evolutions for the density matrix and/or modal amplitudes.  The evolution of 
the modal amplitudes ruled by 

~

( )
S

U t  is different from the unitary evolution, ( )SU t , one 
would obtain in the absence of interaction.  To the first order of perturbation theory, the two 
evolutions can be written as two systems of two first order differential equations for the 
complex modal amplitudes: 0 1/ ( )i i i idw dt i V V w wγ= + − , i = 1,2, for the open gate and 

0/i idc dt i V c= , i = 1,2, for the isolated gate.  By requiring the equality of the two evolutions, 
we find the explicit expression of the additional interaction (potential), 1V , that has to be 
applied on the system in order to restore unitarity.  Formally, this potential is applied as an 
additional fourth term in the complete Hamiltonian.  Practically, the control is calculated in 
turn to each modal amplitude and applied in the form of small pulses whose rate and strength 
depends on the decoherence constant.  By its very nature, this term is not affecting the bath, 
and therefore does not produce an unwanted feedback into the control mechanism.  We have 
applied this control to a NOT gate subjected to various types and degrees of decoherence.  
The decoherence constants calculated from the reduced evolutions as well as the controls’ 
magnitude and repetition rate are consistent with the experimental values [1,2,7,8 and 
references therein].  Simulation results show the efficiency of the control for a broad range of 



conditions as well as its robustness with respect to unavoidable imperfections in the control 
set-up.   

Discussion.  The following comments are in order. 1. The method we propose does not rely 
on the explicit (albeit approximate) Hamiltonian description of the quantum system of 
interest.  Knowledge of decoherence constants is sufficient to design and implement the 
control algorithm.  2. Many of the simplifying assumptions adopted here may be relaxed 
without fundamental modifications, at the expense though of lengthier calculations and a less 
transparent approach. 3. We strongly believe that preventing decoherence by controlling it “in 
situ, as it happens” has – in the long run – a better chance of success than error correcting 
codes [7] that are marred by huge overheads and may themselves have to be corrected for 
errors.  4. Our algorithm relies on the assumption that the bath and the interaction with the 
two-level system are stationary.  However, since during the evolution the system’s parameters 
may change in an unknown way, the open loop control is generally unpredictable.  This is a 
problem though only if changes occur at time scales shorter than the computation time.  
Moreover, one can periodically probe the bath and adjust the control to account for possible 
changes.   In principle, this could be achieved without interfering with the system.  5. For 
quantum computing, elimination of decoherence is necessary, but not sufficient; 
concomitantly, one has to steer the dynamics of the gate to perform the desired calculation.  
Our control scheme can accommodate this requirement.  6. Finally, with minimal, obvious 
modifications, this control scheme can be applied to multi-level NOT gates and four-level or 
multi-level CNOT gates.  
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