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Abstract 

The rapid identification of yield detracting 
mechanisms through integrated yield management is 
the primary goal of defect sourcing and yield 
learning.  At future technology nodes, yield learning 
must proceed at an accelerated rate to maintain 
current defect sourcing cycle times despite the 
growth in circuit complexity and the amount of data 
acquired on a given wafer lot [1].  As integrated 
circuit fabrication processes increase in complexity, it 
has been determined that data collection, retention, 
and retrieval rates will continue to increase at an 
alarming rate.  Oak Ridge National Laboratory 
(ORNL) has been working with International 
SEMATECH (ISMT) to develop methods for 
managing the large volumes of image data that are 
being generated to monitor the status of the 
manufacturing process [2, 3].  This data contains an 
historical record that can be used to assist the yield 
engineer in the rapid resolution of manufacturing 
problems. To date there are no efficient methods of 
sorting and analyzing the vast repositories of imagery 
collected by off-line review tools for failure analysis, 
particle monitoring, line width control, and overlay 
metrology.  In this paper we will describe a new 
method for organizing, searching, and retrieving 
defect imagery based on visual similarity.  The 
results of an industry field test of the ORNL image 
management system at two independent 
manufacturing sites will also be described. 
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1 Introduction 
The ability to manage large image databases has been 
a topic of growing research.  Imagery is being 
generated and maintained for a large variety of 
applications including remote sensing, architectural 
and engineering design, geographic information 
systems, and weather forecasting.  Content-based 
image retrieval (CBIR) is a technology that is being 
developed to address these needs [4].  CBIR refers to 
techniques used to index and retrieve images from 
databases based on their pictorial content.  Pictorial 
content is typically defined by a set of features 
extracted from an image that describe the color, 
texture and/or shape of the entire image or of specific 
image regions.  This feature description is used in 
CBIR to index a database through various means 
such as distance-based techniques, approximate 
nearest-neighbor searching, rule-based decision-
making, and fuzzy inferencing [4, 5].  
 
CBIR addresses a problem created by the growing 
proliferation of automated microscopy inspection in 
semiconductor manufacturing applications, i.e., the 
management and reuse of the large amounts of image 
data collected during defect inspection and review.  
For semiconductor yield management applications 
we have denoted CBIR technology as Automated 
Image Retrieval (AIR) [6, 7].  Digital imagery for 
failure analysis is generated between process steps 
from optical microscopy and laser scattering systems 
and from optical and confocal microscopy, scanning 
electron microscopy (SEM), atomic force microscopy 
(AFM), and focused ion beam (FIB) imaging 
modalities.  This data is maintained in a data 
management system (DMS) and used by fabrication 
engineers to diagnose and isolate manufacturing 
problems.  The semiconductor industry currently has 
no direct means of searching the DMS using image-
based queries, even though 20,000 images are 
collected on average at a typical fabrication (fab) 
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Figure 1 – (a) SEM image of a particle 
defect. (b) Associated defect mask generated 
by the inspection tool during automatic re-
detection. 

 

facility every week [8].  Current abilities to query the 
fabrication process are based primarily on product 
ID, lot number, wafer ID, time/date, process layer, 
engineer classification, or automatic defect 
classification (ADC), etc.  Although this approach 
can be useful, it limits the user’s ability to quickly 
locate historical examples of visually similar 
imagery, especially for data that was placed in the 
database over one or two weeks prior.  Data much 
older than this is nearly irretrievable since retrieval is 
dependent on human memory and experience.  
Without the addition of datamining capabilities such 
as AIR, this large image repository will remain 
virtually untapped as a resource for rapidly resolving 
manufacturing problems. 
 
The ORNL AIR system represents a unique 
application of CBIR technologies to the 
manufacturing environment.  In Section 2 we will 
provide an overview of the AIR software system.  In 
Section 3 we will describe the method of image 
analysis, feature indexing and image retrieval.  In 
Section 4 we provide a brief comparison of AIR and 
ADC technologies.  In Section 5 we will present 
recent results obtained from field-testing of our 
image retrieval system at two semiconductor 
fabrication sites during the Fall of 2000. 

2 Overview of the AIR System 
Image retrieval technologies have been under 
development since the early 1990’s but very few 
applications have evolved for solving specific, real-
world problems such as those in the manufacturing 
environment.  Researchers at ORNL developed the 
capability for a flexible image retrieval technology 
for industrial applications that independently takes 
into account details regarding the product defectivity, 
substrate (i.e., the background structure on which the 
defect resides), and imaging modality characteristics 
[6].  The fundamental premise of the ORNL AIR 
method and technology is that a similar process or 
phenomena likely generates images that are visually 
similar.  This imp lies that statistical process 
information that is associated with retrieved images 
can be used to identify and isolate errant process 
tools and equipment.  Therefore, in our AIR system, 
process data associated with the inspected product is 
included with the defect imagery in a relational 
database for subsequent statistical analysis to provide 
the yield engineer with defect sourcing information.  
 
The basic component of the AIR system is the 
indexing and retrieval engine, a dynamic link library 
(DLL), that generates the defect and substrate image 
feature descriptions and the indexing structure used 

for efficient storage and retrieval of images from the 
database.  In addition to the core AIR DLL, the 
system includes an ORACLE database, a set of 
interface DLLs and executables, and graphical user 
interfaces.  For our current semiconductor 
application, the fab DMS system generates an ASCII 
data file on a daily basis that provides process and 
image data in a format suitable for inclusion into the 
AIR database.  A Windows NT service executable 
periodically checks for output from the DMS system, 
and when detected, the service adds the imagery and 
associated process data to the ORACLE database and 
builds the indexing structure necessary for efficient 
image retrieval.   

3 Image Indexing and Retrieval 
Method 

In this section, we will describe the methodology 
associated with AIR processing.  In overview, this 
begins with the generation and/or use of the defect 
detection mask, which localizes the defect in the 
image.   Next a series of image features are extracted 
from the defect and substrate regions of the images.  
The features become the entire representation of the 
image and are indexed for rapid retrieval from the 
database.  Finally, the image data is associated with 
the manufacturing process within a relational 
database for subsequent statistical process analysis. 

3.1 Defect Masks and Feature Analysis 
Figure 1 shows a SEM image containing a particle 
defect in (a) and the associated defect mask in (b).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



fx

fy

∼1/ε Q

bin structure

fx

fy

∼1/ε Q

fx

fy

∼1/ε Q

bin structure

Figure 2- Example of a kd-tree bin structure 
showing the ANN search region about a query 
point, Q. 

 

The defect mask is typically a binary representation 
that localizes the defect boundaries in the field of 
view.  This mask can be generated in the form of a 
filled region, as shown in the figure, or as a perimeter 
composed of boundary pixels.   Every defect 
detection tool in the semiconductor industry today 
that performs automated defect detection or re-
detection generates a defect mask during the process.  
The defect mask is used to generate descriptive 
features regarding the defect such as its size and 
location, or more extensive information useful for 
ADC, such as color, texture, and shape features. 
 
The defect mask is used in AIR to generate an 
extensive description of the defect region and the 
substrate region.  There are currently 60 numerical 
features measured for the substrate that describe the 
color, texture, and structure.  The defect is 
decomposed into 51 numerical features that describe 
the color, texture, and shape.  The user has the ability 
to select various feature attributes when formulating a 
query so that, for example, a search can be 
accomplished to locate one defect shape on another 
product substrate by ignoring color attributes, which 
are likely to be highly variable from one process 
layer or product to the next.  The user could also 
enable or disable other descriptive groups such as 
texture or shape as required. 
 
This independent description of defect and substrate 
facilitates a wide variety of queries such as “find this 
defect on a different substrate”, or “find this defect 
on any substra te”.  This flexibility allows a single 
AIR system to be used by a broad population of users 
with widely varying needs while still providing 
focused and specific image retrieval searches.   

3.2 Indexing and Retrieval 
The goal of indexing is to organize the image features 
in the database such that a ranked list of nearest 
neighbors can be retrieved without performing an 
exhaustive comparison with all the records in the 
database.  For AIR this is achieved by generating a 
binary decision tree of the image features.  A bin is 
defined as a bottom-level element in our tree 
structure, sometimes described as a “leaf” or terminal 
node, that contains a small list of images, e.g., a 
bottom-level bin may contain a list of image vectors 
{va,  vb,  vc, …}.  Under the AIR architecture, a query 
vector is compared at the top level to each of two 
sub-nodes and a decision is made as to which sub-
tree to take.  There are many ways to implement 
decision trees.  For this work we have implemented 
an approximate nearest neighbor (ANN) indexing 
and search method that builds on kd-tree methods [9].  

Whereas an exhaustive nearest-neighbor search of the 
n vectors (i.e., images) in the database would be of 
O(n) computations, the kd-tree approach is of 
O(log(n)).   
 
Figure 2 shows a simple example of a 2-dimensional 
feature space, (fx, fy), containing 18 image vector 
points partitioned into a kd-tree structure where each 
bin contains 3 points (i.e., image vectors).  The kd-
tree method allows for the rapid retrieval of the 
closest bin to the query point, Q, but the data in this 
bin are not necessarily the closest points and the 
nearest-neighbor result can be in error by an amount 
ε. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The ANN method incorporates a search window that 
results in the collection of neighboring bins about the 
query point.  As this window increases in radius, the 
nearest neighbor error, ε, decreases, but the 
performance of the system also decreases to O(n).  
The efficiency of the ANN method is proportional to 
O((1/ε)d/2log(n)), where d is the dimension of the 
feature space, n is the number of data points, and ε is 
the nearest neighbor error.  The nearest-neighbor 
error is therefore inversely proportional to the size of 
the search window as shown in Fig. 2.  As the radius 
of the search window increases, neighboring bins 
containing additional image vectors are included in 
the final nearest-neighbor search.  As the radius 
continues to grow, the system approaches the 
complexity of an exhaustive nearest-neighbor search.  
Therefore, the accuracy of the AIR system is 



selectable as a trade-off between nearest neighbor 
performance and computational efficiency. 
 
It should also be noted that the structure of the ANN 
method also facilitates the inclusion of new image 
data into the data set without necessarily requiring a 
rebuild of the database, or more specifically the 
indexing structure.  The database is updated, i.e., 
rebuilt, on a periodic basis, e.g., once daily.  During 
use, the system will be gathering image data that will 
be incorporated into the indexing structure during 
these periodic maintenance cycles.  While images are 
being collected, they can be placed within the bin 
structure and retrieved during subsequent queries.  As 
the number of image vectors in these bins increases, 
the efficiency of the ANN process will begin to 
decrease.  When the periodic build is actuated, the 
image vectors will be re-distributed to result in the 
pre-defined minimum bin size required for optimal 
retrieval efficiency.  The result is that this structure 
allows access to the latest image data by 
incorporating it into the database on the fly without 
immediate re-indexing. 

4 Differences Between AIR and 
ADC Technologies 

AIR has been designed to allow for the management 
of large repositories of defect image data through one 
system.  Since its inception as a yield management 
tool, there have been many questions regarding the 
differences between AIR and the more common ADC 
systems that have been proliferating throughout the 
industry over the past decade.  To respond to this, it 
is necessary to view the two systems through the 
concept of a simple feature space as shown in Fig. 3.  
Each point shown in the graph in (a) and (b) 
corresponds to the feature description of an image.  
In the case of the classifier in (a) the goal is to 
classify the data point, C, whereas for image retrieval 
in (b) the goal is to retrieve other data points that are 
similar to the query, Q.  
 
In more detail, Fig. 3a shows a representation of the 
ADC system whose function is to classify, or assign, 
an unknown data point, C, to a class that has been 
defined through a training procedure.  The ADC 
system typically requires training with data that is 
specific to an inspection tool.  Within that tool set, 
there is a requirement to train on specific layers or 
process steps, and for the various products that are 
being inspected.  Training is a cumbersome and 
sometimes unwieldy process that has proved to be a 
limitation, especially in fabs that manufacture many 
different products [10].  The ADC system is typically 
trained on relatively few samples, e.g., ten examples 

per class, therefore resulting in a class representation 
that is limited to a small fraction of the universe of 
images that are generated by tools and inspection 
processes.  This is represented in the figure by the 
small number of points shown in each class region.  
The training set also defines the boundary of the class 
region (e.g., the shaded areas in Fig. 3a), which can 
vary greatly depending on the training data and 
classifier method used.  The ADC system has 
evolved to perform the function of associating defects 
with labels (e.g., tungsten particle, missing pattern, 
poly flake, etc.) and therefore has the potential to be 
correct or incorrect, and the classification process is 
only an intermediary step towards associating the 
label with an errant manufacturing process, i.e., 
defect sourcing.  And finally, the ADC is defect-
centric in that training and execution of the 
classification procedure focuses primarily on the 
defect itself, and largely ignores the substrate as an 
identifying characteristic of the image. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conversely, the AIR system, shown in Fig. 3b, 
performs the function of image retrieval based on a 
query point, Q.  The AIR system organizes and 
maintains multiple sources of images in one system 
(e.g., optical and SEM, multiple layers, steps, tools, 
etc.) and an image-based query will retrieve a 
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Figure 3 – A feature-space comparison of (a) 
ADC versus (b) AIR.  In (a) the data point “C” is 
a point to be classified by the ADC system 
whereas in (b) the data point “Q” is a query upon 
which to perform an image retrieval. 
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Figure 4 –  (a) AIR Field Test software interface for 
controlling image retrieval.  (b) Control panel for loading 
wafer data and images and monitoring progress. 

specified number of images from the database that 
are close to the query in the sense of visual similarity 
(e.g., based on a Minkowski distance in feature 
space).  Therefore, the AIR system does not perform 
classification and does not assign a query point to a 
predefined label.  When the database of images is 
coupled with the manufacturing data that describes 
the fabrication process  -  e.g., layer, step, lot, date, 
inspection tooling, EDX spectra, multiple modes of 
imaging such as optical, SEM, and Confocal  -  it 
becomes possible to associate the query image, Q, 
with visually similar historical images from the 
database therefore linking the query image directly to 
the process and potentially the source of the problem.  
And, since the AIR system focuses on both an 
extensive defect and substrate description, the 
association of defects with products, substrates, 
process steps, and layers is inherent in the analysis.  
An AIR system does not require training and its 
ability to comprehend a large population of images 
from multiple inspection tools and processes over a 
long period of time means that the limitations of 
ADC associated with focused training scenarios and 
frequent modifications to accommodate new products 
and process drift do not apply to AIR as they do with 
ADC. 

5 Field Testing and Results 
ORNL performed two field tests of the AIR software 
system during the Fall of 2000 for the purpose of 
verifying the fundamental premise that a similar 
manufacturing process or phenomena likely 
generates images that are visually similar.  It was 
also desired that testing in a manufacturing 
environment be performed to determine system 
robustness, timing, capacity, usability, and what fab 
data was key to sourcing problems based on defect 
imagery.  Additional defect information (e.g., defect 
position on the wafer, wafer ID, Lot No., etc.) had 
been incorporated into the ORNL AIR system 
through the use of foreign keys and additional 
database tables.  The system was deployed at two 
semiconductor manufacturing sites to demonstrate 
the utility of this approach in managing large 
databases of images and to show causal relationships 
between image appearance and wafer information 
such as layer, lot, dates, etc.  This section summarizes 
the results of these field tests and demonstrates the 
utility of this approach through data analysis 
conducted on approximately one month of historical 
defect data at the two independent fabrication sites.   

5.1 Architecture and Implementation 
The AIR system architecture was described in 
Section 3 above.  For field testing, a method for 

maintaining and associating process information with 
defect imagery was created.  Although the AIR field 
test software was not designed to be a complete 
defect management system, it was necessary to 
include some DMS-type functionality to reach our 
project goals.  Figure 4 shows the graphical user 
interface (GUI) for the field test system.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Toward this end, we envisioned the submission of 
images to our system as the result of defect detection 
during inspection.  During our design process, we 
developed database tables containing several relevant 
entities.  These entities included the Image, that 
stores the file name associated with the image along 
with the feature values that describe its content; the 
Defect, including the classification of the defect, its 
location on the wafer and die, etc; the Inspection, a 
single act of taking one wafer and running it through 
an inspection on a defect detection instrument; the 
Wafer, an entity containing a set of die and possibly 
one or more defects; and associated tables of defect 
classifications and inspection tool types.  The tables 
were embodied in a software object coded in the AIR 
field test DLL. 

5.2 Results 
Table 1 shows the database statistics for each of the 
manufacturing sites after approximately one effective 
month of data collection.  The table shows the total 
number of images associated with the various defects 
(i.e., there can be more than one image of each defect 



Table 1 - Database statistics for Sites 1 and 2. 

Value SITE 1 SITE 2 
Number of DEFECTS 59,593 76,653 
Number of WAFERS 3,856 3,336 
Number of LOTS 1,375 1,021 
Number of STEP / 
LAYERS 

99 164 

Number of IMAGES 62,594 78,953 
Oldest DATE 10-7-2000 9-14-2000 
Latest DATE 11-6-2000 11-1-2000 

generated by different inspection tools), and the 
number of wafers, lots, and process steps.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Regarding system performance there are two times of 
interest in general to the semiconductor fab user.  
First, the time to add images to the database is 
important because the AIR system should basically 
be invisible to the underlying defect detection and 
inspection activity.  Second, retrieval time is 
important because of usability issues and engineering 
response time. 
 
Table 2 lists the timing statistics for data from the 
two test sites.  For the purposes of comparison on a 
common platform, the data sets from each test site for 
the initial month of testing (i.e., 62,594 images from 
Site 1 and 78,953 images from Site 2) where loaded 
on a common machine using data that had been 
collected and returned to ORNL.  The machine used 
was a 750 MHz Pentium PC.  The median, mean, 
maximum and minimum time to add the images to 
the database are recorded in Table 2, along with 
image retrieval time.  The image retrieval time was 
determined by requesting 128 returned images and 
measuring the system response for each database.  
The time to load images from a network and display 

them is not included in this total.  Both these sets of 
times show a very acceptable rate of performance, 
allowing an overall daily sustained input of well over 
100,000 images.  The main difference between the 
timing for the sites is the image size; most images 

from Site 2 were JPEG, 320 x 240 images, while Site 
1 images were JPEG, 640 x 480 or 480 x 480. 
 
Next we have modeled the retrieval system as a k-
nearest neighbor (k-NN) classifier for the step/layer, 
lot, and optical classification categories.  The 
experiments were performed as follows.  For each 
site, we sampled 1024 images from each database 
and submitted them as query images returning 64 
results.  We then counted how many times the most 
common occurrence in the results matched the 
selected parameter in the query image.  For example, 
we determined the layer/step with the most common 
occurrence in the first 4, 8, 16, 32, and 64 returned 
images.  If the most common occurrence matched our 
query image, the query was assigned a value of 1 (for 
success).  Ties were assigned a value of 0.5 for 
unknown and if no matches were returned a value of 
0 was assigned. 
 
Figures 5 through 7 show the results of this k-NN 
test.  Each figure contains weighted and un-weighted 
results for Sites 1 and 2, with classifiers using the 
first 4, 8, 16, 32, and 64 returned results.  Un-
weighted results are computed by finding the number 
of correct classifications for a given layer/step, lot, or 
optical ADC class, then averaging these.  This 
number considers all layer/steps, lots, and optical 
classes equally and does not depend on the number of 
occurrences of each class in the data set.  Weighted 
results are computed by determining the number of 
correct answers and adding these, then dividing by 
the total number of queries.  The performance drops 
as more neighbors are considered because images 
that are further down the list of retrieved images 
become visually dissimilar to the query and therefore 
are less likely to come from the same source.  Note 
that in Fig. 5 there are 99 individual process steps 
represented in the Site 1 data and 164 in the Site 2 

data.  In Fig. 6 there are 
1,375 lots and 1,021 lots 
representing Sites 1 and 2 
respectively.  In Fig. 7 there 
are 148 optical classes and 
39 optical classes 
representing Sites 1 and 2 
respectively.  In all three of 
these k-NN comparisons the 
number of times the top 
four returned images 
matches the query for the 

indicated parameters averages around 70% - which 
supports our hypothesis regarding the link between 
visual similarity and manufacturing processes. 
 
 

Table 2 - Timing statistics for image addition and retrieval. 

Value Site 1 Site 2 
Addition Mean 0.834 sec 0.476 sec 
Addition Median 0.765 sec 0.328 sec 
Addition Maximum 6.0 sec 3.813 sec 
Addition Minimum 0.312 secs 0.016 sec 
Daily Rate  103598 images 181590 images 
Retrieval Time (128 images) 7.5 sec 7.25 sec 
Retrieval Time per image 0.12 ms 0.09 ms 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6 Conclusions 
In this paper we have described a novel content-
based image retrieval and management system that 
has been applied to the semiconductor manufacturing 
environment.  The manufacturing focus of the ORNL 
CBIR application takes advantage of the way in 
which defects are detected with standard industry 
inspection equipment by uniquely describing the 
defect and the background areas of the image 
independently in terms of color, texture, structure, 
and shape.  Current image retrieval systems for 
semiconductor manufacturing depend on additional 
alphanumeric data to perform retrieval functions 
(e.g., lot number, time/date, wafer ID, etc.), which 
produces an inherent limitation to the process of 
locating historic imagery that may have been caused 
by a similar manufacturing process. 
 
The AIR system has been installed in two 
semiconductor manufacturing sites to determine 
system performance and retrieval characteristics.  
The system was shown to perform exceptionally well 
in terms of storage capacity and the time required to 
add and retrieve images and process data through the 
system.  Through these field tests we were able to 
demonstrate our fundamental premise that a similar 
process or phenomena likely generates images that 
are visually similar by performing a series of k-NN 
classification tests to associate queries with process 
parameters such as process step, lot number, or 
optical classification code.  Without the addition of 
content-based image retrieval, this large image 
repository of semiconductor images will remain 
virtually untapped as a resource for rapidly resolving 
manufacturing problems.  The application of the 
ORNL AIR technology to other manufacturing 
environments that generate large amounts of product 
imagery during defect inspection and quality control 
is inherent.   
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SS-CBIR as Layer/Step Classifier
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Figure 5 - Results using the AIR field test system as a 
Layer/Step classifier.  Note that SS-CBIR refers to 
“semiconductor-specific CBIR”. 

 

SS-CBIR as Lot Classifier
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Figure 6 - Results using the AIR field test system as a Lot 
classifier.   

SS-CBIR as Optical Classifier 
(with Statistical Masking)
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Figure 7 - Results using the AIR field test system as an 
Optical Defect classifier.   
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