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Abstract* 

This paper seeks to begin a discussion with regard to developing 
standardized Computer Aided Control System Design (CACSD) tools 
that are typically utilized in an undergraduate controls laboratory. 
The advocated CACSD design tools are based on the popular, 
commercially available MATLAB environment, the Simulink toolbox, 
and the Real-Time Workshop toolbox. The primary advantages of the 
proposed approach are as follows: 1) the required computer 
hardware is low cost, 2) commercially available plants from different 
manufacturers can be supported under the same CACSD environment 
with no hardware modifications, 3) both the Windows and Linux 
operating systems can be supported via the MATLAB based Real-Time 
Windows Target and the Quality Real Time Systems (QRTS) based 
Real-Time Linux Target, and 4) the Simulink block diagram approach 
can be utilized to prototype control strategies; thereby, eliminating the 
need for low level programming skills. It is believed that the above 
advantages related to standardization of the CACSD design tools will 
facilitate: 1) the sharing of laboratory resources within each 
university (i.e., between departments) and 2) the development of 
Internet laboratory experiences for students (i.e., between 
universities). 
  
1 Introduction 

Due to the multidisciplinary nature of the field, a consensus exists 
among control systems educators that laboratory experiences are 
particularly important with regard to the teaching of control 
systems [15]. Unfortunately, recent studies have revealed a lack of 
formal experimental control education in many universities. 
Specifically, a control systems report card from industry [15] 
showed relatively low ratings for engineering graduates in 
attributes such as laboratory and hands-on experiences. 
Engineering accreditation guidelines (ABET 2000 criteria) have 
also recognized that a well-developed laboratory component is a 
key for preparing a modern technological workforce. In addition, 
the recent NSF/CSS workshop on control education [3] 
acknowledged the importance of laboratory experiences with 
regard to exposing students to broader design issues that range 
from problem specification to hardware implementation and 
economic considerations. To be more specific, the NSF/CSS 
workshop report [3] forwarded the following statement as one of 
its primary recommendations: “Promote control systems 
laboratory development ... and make experimental projects an 
integral part of control education for all students….” 
 
Since ABET, NSF, and most faculty agree that the control 
laboratory experience is important, why is it so difficult to build 
and maintain an undergraduate control laboratory? As in most 
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problems related to standardization of hardware or software, we 
believe that the answer to this question is multipart. In our 
opinion, around 1997 the use of standard PC hardware (i.e., 
without the requirement for a DSP), in conjunction with high level 
software language tools, became a more widely accepted method 
for implementing sophisticated control strategies1 in real-time. We 
believe that feasibility of using standard PC hardware for control 
applications actually occurred sometime around the 1993 
timeframe; however, it took some time for many control engineers 
to become comfortable with the concept. The use of standard PC 
hardware is an important concept because it reduces the cost of 
experimental development; moreover, it standardizes the 
computational engine. Second, while Quanser has been at the 
forefront developing a Simulink/Real-Time Workshop based 
front-end for standard PC hardware, other equipment 
manufacturers have slowly embraced this concept. Specifically, 
Quanser has pursued the use of Simulink/Real-Time Workshop 
with standard PC hardware since 1993; however, Feedback, 
Educational Control Products, Shandor, Kentridge Instruments, 
Extra Dimension Technology and many other educational plant 
manufacturers have not developed a Simulink/Real-Time 
Workshop front-end. That is, many of these companies have 
developed proprietary hardware and software for their plants; 
hence, the standardization of control laboratory equipment is made 
difficult due to the differences in the hardware and software 
components used by the various manufacturers. 
 
To address these issues, we discuss the obstacles to 
standardization of a typical undergraduate control laboratory. 
Specifically, we describe the development of the necessary 
Computer Aided Control System Design (CACSD) software tools 
that allow a student to prototype controllers for a variety of 
manufacturers supplied plants using a Simulink/Real-Time 
Workshop front-end. In addition, we discuss some future 
directions with regard to control system laboratory development 
that will improve faculty productivity by fostering cooperation 
among academic institutions with regard to developing new 
material for control systems education. We also point out some 
possible technical directions that can be pursued with regard to 
Internet laboratory experiences for students who do not have direct 
access to control equipment at their university. 
 
Before proceeding with the rest of paper, we need to stress that the 
concepts described in this paper provide only one possible avenue 
for addressing the current deficiencies with regard to the 
undergraduate control systems laboratory experience. The reader 
should note that we only discuss CACSD design tools that use a 
Simulink/Real-Time Workshop interface and do not require a DSP 
board. The reasoning for these restrictions is simple. First, based 
on our conversations with leading manufacturers of undergraduate 
control equipment, we believe that the future undergraduate 
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laboratory experience will be MATLAB/Simulink-based. Second, 
since we are constraining our CACSD tool development to be 
back-fitable (i.e., we require that existing commercially available 
plants be usable with no hardware modifications), it does not seem 
possible to easily accomplish this back-fit goal with a DSP-based 
architecture. Third, we believe that DSP-based control 
architectures tend to be excessively expensive and complicated 
when compared to a PC-based solution. Hence, for these reasons, 
we will not discuss software environments that require the use of 
DSP boards for real-time control such as: ARCS [1], the 
laboratory design discussed in [5], or dSPACE [6],  (for further 
information regarding systems that use DSP technology, see [1], 
[5], [6], and the references within). We have also decided not to 
include any discussion on the HUMUSOFT [13] product, 
Extended Real-Time Toolbox, since it does not seem to guarantee 
some measure of hard real-time performance. Specifically, when 
we questioned HUMUSOFT engineer Jan Houska about the real-
time performance of the Extended Real Time Toolbox, the 
following answer was given “… if you want hard real-time 
performance for anything including data processing, please look at 
the Real-Time Windows Target by The MathWorks. It uses the 
same real-time technology as RT Toolbox does (we have 
developed it for The MathWorks) but, using Real-Time 
Workshop, it moves the data processing to compiled code that is 
able to run in the kernel.” We have also decided to not include 
information about the outstanding products made by Opal-RT 
[18]. The reason for this omission is simple. We think it is highly 
unlikely that an undergraduate laboratory would be constructed 
around a sophisticated product that utilizes two separate PCs as 
the hardware platform as well as two different operating systems 
(i.e., QNX and Windows). 
 
2 Undergraduate Control Systems Laboratory Development 
Issues 

Recent advances in hardware and software technologies have 
generated much discussion with regard to the undergraduate 
control systems laboratory experience [2], [14], [26]. Specifically, 
due to the advent of high-speed, low-cost, real-time computing 
platforms, the development of control systems laboratory 
hardware is now becoming more accessible. Moreover, 
developments in automated code generation allow users to create 
real-time code from graphical, control system simulation software 
such as MATLAB/Simulink. This tool enables educators and 
students to focus on control system design, implementation, and 
evaluation rather than on time-consuming, low-level 
programming. In addition, a variety of educational/research plants 
are commercially available from different vendors [7], [8], [9], 
[17], [21], [22]. These plants capture the multidisciplinary nature 
of the field (e.g., robot manipulator, inverted pendulum, magnetic 
levitation, water tank, pH control rig, helicopter, ball and beam, 
DC motor, etc.). Despite the availability of the many software 
tools and the variety of available plants, it is fair to say that the 
existence of a control laboratory experience for a typical 
undergraduate is not commonplace. This fact might be credited to 
any of a number issues; however, in this paper, we will discuss 
and address the following barriers: 1) lack of standardized 
hardware/software and 2) budget constraints. 
  
3 The Standardization Issue  

Background: From our point of view, one of the main obstacles 
with regard to developing an educational undergraduate control 
laboratory is the lack of standardization among educational control 
products. Currently, each manufacturer of laboratory experiments 

utilizes a different software environment, interface hardware, and 
I/O board. As a result, undesirable hardware and/or software 
modifications are often necessary to adapt a plant to vendor-
specific software. For example, manufacturers such as Educational 
Control Products (ECP) [7] and Feedback [9] have a variety of 
well-designed plants, but until recently no Simulink/Real-Time 
Workshop front-end was provided; hence, if a student desired to 
change the control algorithm, he/she was required to learn a 
proprietary low-level software language. To alleviate this problem, 
Feedback and ECP recently started marketing products for Real-
Time Windows Target and Real-Time Linux Target that require 
no hardware modifications. To provide a Simulink/Real-Time 
Workshop front-end, Quanser [21] developed the WinCon 
software environments for the Windows2 operating system. 
Unfortunately, WinCon cannot be readily used with plants sold by 
other manufacturers (e.g., ECP [7], Feedback [9], Mechatronic 
Systems [17], etc.) without back-engineering their electronic 
interfacing for use with Quanser's I/O board or writing device 
drivers for I/O boards not manufactured by Quanser. This retrofit-
based approach often requires a certain level of programming 
and/or electronics expertise that simply may not exist in some 
academic departments.  In addition, a homegrown retrofit-based 
approach is often time consuming and unreliable. 
 
Due to the incompatibility among the leading educational control 
equipment manufacturers, many control educators around the 
world have been prompted to spend precious time developing their 
own experimental testbeds. This decision may be motivated by 
their disillusionment with some of the commercially available 
CACSD front-ends or the interest in examining a plant that is 
more challenging from an educational and/or research point of 
view (e.g., the so-called Pendubot developed at University of 
Illinois at Urbana-Champaign [25]) than custom-made plants. 
Here again a compatibility issue arises since in-house plants 
cannot be easily interfaced with some of the commercially 
available CACSD software. Another approach that some control 
educators have taken to overcome the aforementioned 
compatibility issues is to design the control systems laboratory 
using plants from only one manufacturer (e.g., see [14]). However, 
this approach limits the educational experience to the plants 
supplied by one manufacturer and does not allow for the flexibility 
of rotating between a wide range of experiments by various 
manufacturers or the development of in-house experiments. 
 
Proposed Solution to the Standardization Problem: To hurdle the 
obstacles that impede the development of a standardized control 
systems laboratory, a software environment is required that 
provides a low-cost, standardized interface for commercially 
available plants and/or in-house developed plants. In this section, 
we describe a CACSD environment that meets these requirements. 
The CACSD environment is composed of five design tools 
including: MATLAB, Simulink, Real-Time Workshop (RTW), 
Real-Time Linux Target (RTLT) and Real-Time Windows Target 
(RTWT) that are structured in a hierarchical manner3 as shown in 
Figure 1. Each of these software components can be executed on 
standard PC hardware running on the Linux or Windows operating 
systems. Figure 1 illustrates the hierarchical structure of the 
CACSD environment along with interfaces to the user and a 
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Figure 1. The CACSD Environment 

physical plant. Since MATLAB, Simulink, RTW, RTLT, and 
RTWT are the components of the CACSD environment, a brief 
description of each component is given as follows. 
  
MATLAB is a software environment [16] that allows a user to 
easily integrate computation and visualization tasks. The main 
advantage of MATLAB lies in that problems and solutions are 
expressed in familiar mathematical notations. Due to the fact that 
numerous toolboxes and other software packages have been 
developed for MATLAB, it has become the tool of choice for 
computation, algorithm development, modeling, simulation, data 
analysis, visualization, engineering graphics, and application 
development (including graphical user interface (GUI) 
development). 

 
Simulink is a software package [16] for modeling, simulating, and 
analyzing dynamic systems in the MATLAB environment. 
Simulink supports both linear and nonlinear systems that are 
modeled in continuous time and discrete time. The Simulink GUI 
is used to create block diagram models. Various block-set libraries 
provide pre-configured blocks and connectors that can be 
incorporated into a model by simple drag and drop operations. 
Different types of sources in these libraries allow the user to apply 
different inputs. After the model is defined, the user can simulate 
the response of the system by selecting the appropriate time 
integration method. Simulink also allows for on-line parameter 
tuning in order to assess the change in system response. Scopes 
and other display blocks allow the user to view the simulation 
results while the simulation is still running.  
 
RTW is an automatic C language code generator [16] for 
Simulink, which runs within the MATLAB environment. RTW 
generates C code directly from the Simulink models and 
automatically constructs a file that can be executed in real-time in 
various environments. In conjunction with RTW, Simulink 
provides a powerful front-end for developing executable code 
without requiring a large amount of computer skills. That is, the 
block diagram interface of Simulink coupled to the RTW code 
generator allows the user to concentrate on the modeling and 
control issues as opposed to programming issues. 
 
RTLT is a software package that gives the user the ability to 
implement a Simulink block diagram on a standard PC in hard 
real-time (i.e., provide a deterministic response). Specifically, 
RTLT is a set of source files, device driver libraries, a template 
makefile, and a MEX-file interface that uses RTW to 

automatically generate C code from a user-defined Simulink block 
diagram. The C code is first generated and compiled on a PC 
running RT-Linux. A target for running the generated code is then 
built on the same PC. During the execution of a Simulink block 
diagram, RTLT captures sampled data from one or more input 
channels (e.g., A/D channels, digital lines, and encoder lines, etc.) 
using standard I/O boards. RTLT then provides the data to the 
block diagram model. The Simulink block diagram model then 
processes the data accordingly. RTLT then outputs the processed 
data via one or more output channels (e.g., D/A channels). A 
custom Simulink block library and four different hardware I/O 
board drivers are also provided. The user can also observe the 
behavior of any signal during or after the real-time run via the 
Simulink Scope blocks. If the user builds the Simulink code in the 
external mode, the user can perform on-line parameter tuning 
during real-time execution. 
 
RTWT is a Windows-based software package that merges the 
power of Simulink block diagrams and the C code conversion 
ability of RTW into one package that is able to implement a 
control algorithm. It has the ability to run Simulink models under 
Windows 95/98 or Windows NT 4.0 in real-time on standard PC 
hardware. It allows the user to tune control parameters while the 
real-time model is running. The Simulink Scope can be used to 
monitor the system outputs in real-time; whereas, the data 
archiving ability can be used to collect the run time data in a 
MAT-file format for later analysis 
and visualization in MATLAB. 
RTWT provides a good alternative 
for those users that would like to 
keep a complete The Mathworks, 
Inc. solution (the makers of 
Simulink, RTW, and RTWT). 
 
Case Study for Resolving the 
Standardization Problem: To 
illustrate the advantages of the 
CACSD software environment 
described in the previous sections, 
we utilized RTLT along with a 
typical undergraduate experiment 
(i.e. the inverted pendulum shown 
in Figure 2) manufactured by ECP 
to perform an example laboratory 
exercise. Specifically, we first 
worked with QRTS to develop a 
software driver4 for the ECP I/O board that facilitates control 
prototyping with a Simulink/Real-Time Workshop front-end. We 
then developed a simple Simulink block diagram for a 
proportional derivative controller that forced the inverted 
pendulum to track a square wave reference signal. The Simulink 
user interface tools were then used to tune the control gains to 
achieve the desired response (see Figure 3).  
 
Based on above experience, it became clear to us that the 
standardization problem could be resolved if this process could be 
repeated with other plants made by other manufacturers. The main 
advantages of this approach are that:  the control experiment was 
implemented in real-time using a low-cost, standard PC, and the 
executable was generated from a Simulink block diagram; hence, 

                                                           
4 This software extension of RTLT is now marketed by QRTS, and it 
allows ECP plants to be controlled with a Simulink/Real-Time Workshop 
front-end with no hardware modifications 

 
Figure 2. ECP Inverted 
Pendulum Experiment



  

low-level programming skills are not required. To demonstrate 
that this approach could be utilized in conjunction with other 
plants, we also created new Simulink files and performed similar 
experiments using the other plants from ECP (e.g., the Servo 
Trainer, Rectilinear, and Torsion experiments). We then repeated 
the same process with Feedback plants (e.g., the Helicopter, 
Magnetic Levitation, Modular Servo, and Pendulum experiments), 
and a Quanser plant (e.g., the Inverted Pendulum experiment). To 
illustrate that the above solution to the standardization problem is 
not limited to the Linux operating system, we then worked with 
QRTS to develop a software interface for RTWT (i.e., a Windows 
operating system solution). This approach allowed all of our 
previous Simulink files developed under the Linux operating 
system to be reused for controlling the ECP plants, Feedback 
plants, and the Quanser plant under the Windows operating 
system. That is, by using the same Simulink block diagrams with 
the I/O blocks replaced by appropriate S-function blocks supplied 
by QRTS, we were able to implement the same experiments on a 
PC operating under Windows 98 using RTWT. The reader is 
referred to [20] for further details with regard to downloading the 
Simulink files and the experimental results. 
 
Compatibility Issues with In-House Developed Plants: A potential 
compatibility issue may arise if an in-house plant cannot be 
interfaced with the Simulink/Real-Time Workshop front-end. 
Fortunately, QRTS and Quanser both supplied solutions for the 
use of a generic multifunction I/O board for both the Windows and 
Linux operating systems. Specifically, QRTS supports both the 
MultiQ and ServoToGo I/O boards under both RTLT and RTWT 
while Quanser supports the MultiQ and Keithley-Metrabyte I/O 
boards under WinCon and SimuLinux. Both the MultiQ and 
ServoToGo I/O boards are excellent products that include a wide 
range of functionality (see [20] for more information with regard 
to functionality of these I/O boards). To illustrate the ease in 
which an in-house developed plant can be supported, we 
collaborated with Mechatronic Systems, Inc. [17] and QRTS to 
develop the necessary hardware/software interface for the 
Pendubot [20]. By leveraging off our past experience, it took us 
one day to prototype a control for the Pendubot under RTLT with 
the ServoToGo I/O board [20]. Due to the availability of the 
QRTS developed software interface for the ServoToGo I/O board, 
it would be a trivial matter to run the same experiment under 
RTWT. 
 
4 The Budget Constraint Issue 
 
Shared Laboratories within a University: The use of shared 
laboratories may offer some relief with regard to the budget 
constraint issue. That is, leveraging off of the fact that the field of 
control systems is multidisciplinary in nature can save funds. As 
such, it is quite common for engineering departments (e.g., 
electrical, mechanical, aerospace, chemical, etc.) to 
simultaneously offer undergraduate control system courses. These 
courses, although sharing some common theoretical content, are 
properly adapted to the technical needs of their respective 
engineering fields [26]. Due to the multidisciplinary nature of 
control, it seems natural to develop educational control labs that 
are shared among engineering departments. In addition, the 
existing paradigm of individual departmental laboratories seems 
difficult to sustain due to the high cost of laboratory equipment 
(i.e., the plants, oscilloscopes, voltmeters, actuators, sensors, 
computers, I/O boards, etc.) and the increasing demands on faculty 
time [26]. As noted in the NSF/CSS workshop [3], shared 
laboratories have several financial and pedagogical advantages. 

For example, shared laboratories: 1) avoid the duplication of 
equipment, and hence, enable the more efficient use of resources, 
2) increase the exposure of students to the multidisciplinary nature 
of the field, and 3) encourage interaction of faculty and students 
across disciplines. One recent implementation of this idea that can 
serve as a model for other universities is the experience instituted 
in the College of Engineering of the University of Illinois at 
Urbana-Champaign. Specifically, an integrated network of 
laboratories was designed to service all controls-related courses in 
the College of Engineering. A detailed description of this 
experience can be found in [26].  
 
Internet Laboratory Concept: Taking the shared laboratory 
paradigm a step further, the controls community is also starting to 
witness a trend towards the development of Internet-based labs 
[10], [12], [19]. The idea is to develop laboratory experiments that 
can be remotely accessed and controlled over the Internet. The 
primary motivating factor of the Internet laboratory concept is to 
enhance the accessibility of laboratory facilities for instructors and 
students. That is, an Internet laboratory experience can be used to 
accommodate students whose schedules may not conform to the 
traditional laboratory model or students who require more time to 
complete laboratory work. The Internet laboratory concept also 
provides an experimental experience for instructors and students at 
universities that may lack the in-house resources. Typical 
components of an Internet laboratory include [10]: 1) a physical 
plant to be controlled, 2) a control server computer that computes 
the control algorithm and handles actuator/sensor signals to/from 
the plant as well as all communication with the remote user, 3) a 
controlling client computer that allows a remote user to operate 
the plant, 4) an Internet connection to link the client computer to 
the server computer (e.g., TCP/IP protocol), and 5) experiment 
audio, video, and/or animation to give the remote user a sense of 
telepresence in the laboratory. To address some of these issues 
related to Internet control, Quanser has recently developed 
WebLab [4], a graphical interface to WinCon, which offers 
distributed control, tuning, and visualization of control systems 
through the Internet via a web page based environment. 
 
Obstacles Associated with an Internet-based Control Lab: While 
the use of the Internet may save funds with regard to providing a 
controls laboratory experience for undergraduates, there are some 
obstacles that impede the development of an Internet-based lab. 
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As described previously, the operation of Internet labs requires 
that the remote user connect to the server computer via a client 
computer and an Internet connection. Once connected, most of the 
recently developed remote labs [12] only allow users to send set 
point commands to the physical plant and perhaps alter the control 
gain (i.e., the controller structure remains fixed). This is very 
restrictive since the student cannot design and test his/her own 
controller. Ideally, an Internet laboratory should allow the student 
to design his/her own controller, upload it to the server computer, 
and test it on the actual plant. In this scenario, two issues need to 
be carefully addressed. First, the server computer should have the 
ability to detect and avoid problems (e.g., mistakes when a user 
uploads an “unsafe” controller that results in an unstable system or 
saturated amplifiers). Second, to the greatest extent possible, the 
Internet laboratory system should avoid requiring the installation 
of special software on the client computer since compatibility 
problems may arise and discourage the student from making the 
effort necessary to get the experiment working. Some Internet-
based robotic systems work using a web browser as the human 
interface for the remote computer system [11]. Although this 
eliminates the need for downloading specialized software, it limits 
the prototyping of new control strategies. Another aspect requiring 
further investigation is that, due to Internet traffic and bandwidth, 
one must take care in developing a system to provide telepresence 
features that augment the Internet laboratory experience. Previous 
Internet-based robots such as Xavier [23], have only given visual 
feedback through a web browser of the robot's status which is 
updated every 5-10 seconds. This slow visual update detaches the 
end user from a feeling of “being there”. That is, it seems that the 
present speed of the Internet requires some sort of hybrid approach 
that provides a limited “low-resolution” live video of the 
experiment followed by a “high-resolution” downloadable version 
of the video. 

A New Internet Control Lab Experience: As explained previously, 
RTLT and RTWT are software environments that allow the user to 
implement a Simulink block diagram in real-time on standard PC 
hardware using the RT Linux/Windows operating systems. 
Presently, RTLT provides Internet-based control capabilities out 
of the box. Specifically, RTLT’s Internet capability is achieved 
through the use of the X Window system, which implements a 
protocol for network-based windowing. Specifically, the user can 
log into a RTLT PC using telnet or rlogin and display an xterm (an 
X Windows client) at the user's workstation. MATLAB can then 
be started in the xterm, thereby, allowing the user to: 1) create/edit 
a Simulink block diagram, 2) compile the Simulink block diagram 
using Real-Time Workshop, and 3) execute the compiled code in 
real-time. The user may monitor data signals at the remote PC or 
workstation using the Simulink scope.5  
 
The performance of the current Internet capability of RTLT is 
acceptable on a local area network; however, because of network 
traffic, this solution is not practical for use over the Internet. That 
is, the use of X Windows to remotely display a real-time plot, such 
as the Simulink scope, consumes much more bandwidth than 
simply sending decimated log data to the remote user workstation. 
In addition, the Internet experience (see Figure 4) will be more 
real to the user if: 1) live streaming video of the experiment is 
provided as the experiment is operating, 2) a high quality 30 fps 
version is provided when the experiment is over, and 3) a live 

                                                           
5 It is important to note that the Internet control experience provided by 
RTLT does not require the user to have any MATLAB products running at 
the remote machine (i.e., the remote machine only utilizes an X server).  

virtual reality (VR) model is animated as the experiment is 
operated (i.e., this animation would be directly connected to the 
actual plant outputs). The VR animation would allow the 
experimenter to examine the system from any viewpoint, 
something not possible with a simple fixed camera video. In 
addition, the ability to synchronize the video and VR playback 
with plots of signals logged during the control would be very 
useful, since this capability would allow the experimenter to 
correlate the behavior of the physical plant with the variables 
being controlled. Although the Windows operating system does 
not inherently allow remote access, as does Linux, similar 
functionality can be achieved on a Windows platform running 
RTWT by installing additional software. One possible option is 
Virtual Network Computing that can be downloaded for free from 
http://www.uk.research.att.com/vnc/. 
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Figure 4. Internet Control Laboratory Setup 

Some Solutions to Problems Associated with an Internet-based 
Control Lab: In essence, the use of remote operation has the 
advantage of: 1) reducing costs by sharing laboratory equipment, 
2) allowing users to have greater oversight of the control 
implementation, and 3) allowing access to facilities 24 hours per 
day. Although the benefits of remote operation are monumental, 
there are also drawbacks to such activity. Any type of computer 
system that allows free access is vulnerable to hacking. To 
maximize security, users can be forced to use local copies of 
Simulink to create models, which should then be uploaded to the 
Internet Laboratory PC. All interactions between the Internet 
Laboratory PC and the user’s workstation can then be 
implemented through communication protocols (this method 
limits what users are able to do on the Internet Laboratory PC). In 
addition to security concerns, there is no guarantee that the user's 
code is error free. For example, the user’s code may contain 
syntax errors, undefined variables, or calculation errors that may 
result in an unstable closed-loop system (i.e., excessive voltage 
may be commanded and/or violent oscillations may occur).  To 
address these issues, the community needs to investigate using a 
switching control strategy that detects situations in which the 
user’s controller is determined to be “unsafe”. If an unsafe control 
situation is detected, the safe controller is switched on and the user 
is notified that his/her controller has failed; hence, system 
robustness is assured while allowing maximum flexibility for the 
user. One also needs to ensure that all Internet experiments are 



  

self-resetting, so that the system will be able to reboot itself and 
resume operation without local human intervention. 
 
5 Cost Comparison 

In writing a paper like this, we also need to mention some issues 
related to cost and real-time performance. For comparison 
purposes, we first note that the cost of a Quanser solution for 
Windows NT would run about $1,227 dollars per seat while the 
cost of a Mathworks solution would be about $150 dollars per seat 
(All of the price quotes in this paper are calculated based on the 
Mathworks classroom kit pricing structure for less than 25 copies). 
We also note the cost of a fully supported Quanser SimuLinux 
solution would be about $527 dollars per seat while the cost of a 
fully supported QRTS RTLT solution would be approximately 
$682 dollars per seat. Based on the above pricing structure, we 
believe that RTWT will become the real-time computation engine 
of choice for undergraduate laboratory instruction. That is, while 
WinCon, SimuLinux, and RTLT have some advantages over 
RTWT, it seems that it will be very difficult for any third party 
company to compete with Mathworks’ pricing scheme as far as 
undergraduate laboratory instruction is concerned. In addition, 
since Mathworks provides software interfaces for many generic 
I/O boards that can be used with in-house developed plants, and 
several vendors of commercially available plants (e.g., Feedback 
and ECP) are providing RTWT software interfaces for their 
equipment, it seems inevitable that RTWT will become the 
standard real-time engine for undergraduate control laboratories.  
 
6 Real-Time Performance 
 
With regard to real-time performance, we were initially very 
skeptical about the use of RTWT. This skepticism was due to the 
fact that we could not find any information regarding how 
Mathworks ensures some measure of real-time performance under 
Windows 98 and Windows NT. We should note that we really do 
not know how WinCon accomplishes real-time performance under 
Windows 98; however, we note that Quanser ensures real-time 
performance under Windows NT with the VenturCom software 
extensions (see [28]). To examine the real-time performance of 
RTWT from a control point of view, we have recently completed 
some relatively sophisticated robot control experiments with 
RTWT. Specifically, we have performed the same control 
experiments using both RTLT and RTWT for a six degree-of-
freedom robot manipulator. We achieved the same performance 
(i.e., the performance measured by the link tracking error) for both 
RTLT and RTWT. Since we know that RTLT provides very good 
real-time performance by using a hard real-time extension of 
Linux, we are becoming less skeptical about the use of RTWT. 
Perhaps, WinCon (with the VenturCom extensions), SimuLinux, 
and RTLT with their guaranteed hard real-time performance and 
other advantages6 will remain attractive alternatives for the control 
researcher or industrial user who demands hard real-time 
performance as well as a Simulink/Real-Time Workshop front-
end. 
 
7 Conclusion 

In this paper, we discussed the standardization of CACSD 
software tools for undergraduate control laboratory development. 

                                                           
6 WinCon, SimuLinux, and RTLT possess several advantages over RTWT 
(e.g., WinCon has superior plotting features in comparison to the Simulink 
scope); however, a discussion of these advantages was deemed beyond the 
scope of this paper. 

Specifically, the proposed approach advocates the use of 
MATLAB compatible products to standardize the execution of 
controllers in real-time using standard, low-cost PC hardware. To 
illustrate the feasibility of the approach, we discussed the 
development of a Simulink/Real-Time Workshop front-end for a 
specific ECP plant. We then described how other commercially 
available plants could be back-fitted with no hardware 
modifications. To address the issue of reducing the cost associated 
with control laboratory development, we presented some new 
concepts with regard to using Internet-based laboratory 
experiments. 
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