

Towards the Standardization of a MATLAB-Based Control Systems

Laboratory Experience for Undergraduate Students*

W. E. Dixon1, D. M. Dawson2, B. T. Costic2, and M.S. de Queiroz3
1Robotics and Process Systems Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6305

2Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634-0915
3Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803-6413

E-mail: dixonwe@ornl.gov, Telephone: (865) 574-9025

Keywords: Undergraduate Education, Real-Time Control, Simulink

"The submitted manuscript has been authored
by a contractor of the U.S. Government
under contract No. DE-AC05-
96OR22464. Accordingly, the U.S.
Government retains a nonexclusive, royalty-
free license to publish or reproduce the
published form of this contribution, or allow
others to do so, for U.S. Government
purposes."

To appear in the IEEE American Control Conference, June 25 - June 27, 2001, Arlington, VA

* This research was performed in part by a Eugene P. Wigner Fellow and staff member at the Oak
Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy
under contract DE-AC05-00OR22725 and is supported in part by the U.S. NSF Grants DMI-
9457967, DMI-9813213, EPS-9630167, ONR Grant N00014-99-1-0589, a DOC Grant, and an
ARO Automotive Center Grant.

Towards the Standardization of a MATLAB-Based Control Systems
Laboratory Experience for Undergraduate Students*

W. E. Dixon1, D. M. Dawson2, B. T. Costic2, and M. S. de Queiroz3

1Robotics and Process Systems Division, Oak Ridge National Laboratory, P.O. Box 2008-6305
2Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634

3Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803-6413
email: dixonwe@ornl.gov; ddawson, bcostic@ces.clemson.edu; dequeiroz@alpha2.eng.lsu.edu

Abstract*

This paper seeks to begin a discussion with regard to developing
standardized Computer Aided Control System Design (CACSD) tools
that are typically utilized in an undergraduate controls laboratory.
The advocated CACSD design tools are based on the popular,
commercially available MATLAB environment, the Simulink toolbox,
and the Real-Time Workshop toolbox. The primary advantages of the
proposed approach are as follows: 1) the required computer
hardware is low cost, 2) commercially available plants from different
manufacturers can be supported under the same CACSD environment
with no hardware modifications, 3) both the Windows and Linux
operating systems can be supported via the MATLAB based Real-Time
Windows Target and the Quality Real Time Systems (QRTS) based
Real-Time Linux Target, and 4) the Simulink block diagram approach
can be utilized to prototype control strategies; thereby, eliminating the
need for low level programming skills. It is believed that the above
advantages related to standardization of the CACSD design tools will
facilitate: 1) the sharing of laboratory resources within each
university (i.e., between departments) and 2) the development of
Internet laboratory experiences for students (i.e., between
universities).

1 Introduction

Due to the multidisciplinary nature of the field, a consensus exists
among control systems educators that laboratory experiences are
particularly important with regard to the teaching of control
systems [15]. Unfortunately, recent studies have revealed a lack of
formal experimental control education in many universities.
Specifically, a control systems report card from industry [15]
showed relatively low ratings for engineering graduates in
attributes such as laboratory and hands-on experiences.
Engineering accreditation guidelines (ABET 2000 criteria) have
also recognized that a well-developed laboratory component is a
key for preparing a modern technological workforce. In addition,
the recent NSF/CSS workshop on control education [3]
acknowledged the importance of laboratory experiences with
regard to exposing students to broader design issues that range
from problem specification to hardware implementation and
economic considerations. To be more specific, the NSF/CSS
workshop report [3] forwarded the following statement as one of
its primary recommendations: “Promote control systems
laboratory development ... and make experimental projects an
integral part of control education for all students….”

Since ABET, NSF, and most faculty agree that the control
laboratory experience is important, why is it so difficult to build
and maintain an undergraduate control laboratory? As in most

* This research was performed in part by a Eugene P. Wigner Fellow and
staff member at the Oak Ridge National Laboratory, managed by UT-
Battelle, LLC, for the U.S. Department of Energy under contract DE-
AC05-00OR22725 and is supported in part by the U.S. NSF Grants DMI-
9457967, DMI-9813213, a DOC Grant, and an ARO Automotive Center
Grant.

problems related to standardization of hardware or software, we
believe that the answer to this question is multipart. In our
opinion, around 1997 the use of standard PC hardware (i.e.,
without the requirement for a DSP), in conjunction with high level
software language tools, became a more widely accepted method
for implementing sophisticated control strategies1 in real-time. We
believe that feasibility of using standard PC hardware for control
applications actually occurred sometime around the 1993
timeframe; however, it took some time for many control engineers
to become comfortable with the concept. The use of standard PC
hardware is an important concept because it reduces the cost of
experimental development; moreover, it standardizes the
computational engine. Second, while Quanser has been at the
forefront developing a Simulink/Real-Time Workshop based
front-end for standard PC hardware, other equipment
manufacturers have slowly embraced this concept. Specifically,
Quanser has pursued the use of Simulink/Real-Time Workshop
with standard PC hardware since 1993; however, Feedback,
Educational Control Products, Shandor, Kentridge Instruments,
Extra Dimension Technology and many other educational plant
manufacturers have not developed a Simulink/Real-Time
Workshop front-end. That is, many of these companies have
developed proprietary hardware and software for their plants;
hence, the standardization of control laboratory equipment is made
difficult due to the differences in the hardware and software
components used by the various manufacturers.

To address these issues, we discuss the obstacles to
standardization of a typical undergraduate control laboratory.
Specifically, we describe the development of the necessary
Computer Aided Control System Design (CACSD) software tools
that allow a student to prototype controllers for a variety of
manufacturers supplied plants using a Simulink/Real-Time
Workshop front-end. In addition, we discuss some future
directions with regard to control system laboratory development
that will improve faculty productivity by fostering cooperation
among academic institutions with regard to developing new
material for control systems education. We also point out some
possible technical directions that can be pursued with regard to
Internet laboratory experiences for students who do not have direct
access to control equipment at their university.

Before proceeding with the rest of paper, we need to stress that the
concepts described in this paper provide only one possible avenue
for addressing the current deficiencies with regard to the
undergraduate control systems laboratory experience. The reader
should note that we only discuss CACSD design tools that use a
Simulink/Real-Time Workshop interface and do not require a DSP
board. The reasoning for these restrictions is simple. First, based
on our conversations with leading manufacturers of undergraduate
control equipment, we believe that the future undergraduate

1 The word sophisticated is used to highlight the possible use of nonlinear
terms in a controller in contrast to a standard linear controller.

laboratory experience will be MATLAB/Simulink-based. Second,
since we are constraining our CACSD tool development to be
back-fitable (i.e., we require that existing commercially available
plants be usable with no hardware modifications), it does not seem
possible to easily accomplish this back-fit goal with a DSP-based
architecture. Third, we believe that DSP-based control
architectures tend to be excessively expensive and complicated
when compared to a PC-based solution. Hence, for these reasons,
we will not discuss software environments that require the use of
DSP boards for real-time control such as: ARCS [1], the
laboratory design discussed in [5], or dSPACE [6], (for further
information regarding systems that use DSP technology, see [1],
[5], [6], and the references within). We have also decided not to
include any discussion on the HUMUSOFT [13] product,
Extended Real-Time Toolbox, since it does not seem to guarantee
some measure of hard real-time performance. Specifically, when
we questioned HUMUSOFT engineer Jan Houska about the real-
time performance of the Extended Real Time Toolbox, the
following answer was given “… if you want hard real-time
performance for anything including data processing, please look at
the Real-Time Windows Target by The MathWorks. It uses the
same real-time technology as RT Toolbox does (we have
developed it for The MathWorks) but, using Real-Time
Workshop, it moves the data processing to compiled code that is
able to run in the kernel.” We have also decided to not include
information about the outstanding products made by Opal-RT
[18]. The reason for this omission is simple. We think it is highly
unlikely that an undergraduate laboratory would be constructed
around a sophisticated product that utilizes two separate PCs as
the hardware platform as well as two different operating systems
(i.e., QNX and Windows).

2 Undergraduate Control Systems Laboratory Development
Issues

Recent advances in hardware and software technologies have
generated much discussion with regard to the undergraduate
control systems laboratory experience [2], [14], [26]. Specifically,
due to the advent of high-speed, low-cost, real-time computing
platforms, the development of control systems laboratory
hardware is now becoming more accessible. Moreover,
developments in automated code generation allow users to create
real-time code from graphical, control system simulation software
such as MATLAB/Simulink. This tool enables educators and
students to focus on control system design, implementation, and
evaluation rather than on time-consuming, low-level
programming. In addition, a variety of educational/research plants
are commercially available from different vendors [7], [8], [9],
[17], [21], [22]. These plants capture the multidisciplinary nature
of the field (e.g., robot manipulator, inverted pendulum, magnetic
levitation, water tank, pH control rig, helicopter, ball and beam,
DC motor, etc.). Despite the availability of the many software
tools and the variety of available plants, it is fair to say that the
existence of a control laboratory experience for a typical
undergraduate is not commonplace. This fact might be credited to
any of a number issues; however, in this paper, we will discuss
and address the following barriers: 1) lack of standardized
hardware/software and 2) budget constraints.

3 The Standardization Issue

Background: From our point of view, one of the main obstacles
with regard to developing an educational undergraduate control
laboratory is the lack of standardization among educational control
products. Currently, each manufacturer of laboratory experiments

utilizes a different software environment, interface hardware, and
I/O board. As a result, undesirable hardware and/or software
modifications are often necessary to adapt a plant to vendor-
specific software. For example, manufacturers such as Educational
Control Products (ECP) [7] and Feedback [9] have a variety of
well-designed plants, but until recently no Simulink/Real-Time
Workshop front-end was provided; hence, if a student desired to
change the control algorithm, he/she was required to learn a
proprietary low-level software language. To alleviate this problem,
Feedback and ECP recently started marketing products for Real-
Time Windows Target and Real-Time Linux Target that require
no hardware modifications. To provide a Simulink/Real-Time
Workshop front-end, Quanser [21] developed the WinCon
software environments for the Windows2 operating system.
Unfortunately, WinCon cannot be readily used with plants sold by
other manufacturers (e.g., ECP [7], Feedback [9], Mechatronic
Systems [17], etc.) without back-engineering their electronic
interfacing for use with Quanser's I/O board or writing device
drivers for I/O boards not manufactured by Quanser. This retrofit-
based approach often requires a certain level of programming
and/or electronics expertise that simply may not exist in some
academic departments. In addition, a homegrown retrofit-based
approach is often time consuming and unreliable.

Due to the incompatibility among the leading educational control
equipment manufacturers, many control educators around the
world have been prompted to spend precious time developing their
own experimental testbeds. This decision may be motivated by
their disillusionment with some of the commercially available
CACSD front-ends or the interest in examining a plant that is
more challenging from an educational and/or research point of
view (e.g., the so-called Pendubot developed at University of
Illinois at Urbana-Champaign [25]) than custom-made plants.
Here again a compatibility issue arises since in-house plants
cannot be easily interfaced with some of the commercially
available CACSD software. Another approach that some control
educators have taken to overcome the aforementioned
compatibility issues is to design the control systems laboratory
using plants from only one manufacturer (e.g., see [14]). However,
this approach limits the educational experience to the plants
supplied by one manufacturer and does not allow for the flexibility
of rotating between a wide range of experiments by various
manufacturers or the development of in-house experiments.

Proposed Solution to the Standardization Problem: To hurdle the
obstacles that impede the development of a standardized control
systems laboratory, a software environment is required that
provides a low-cost, standardized interface for commercially
available plants and/or in-house developed plants. In this section,
we describe a CACSD environment that meets these requirements.
The CACSD environment is composed of five design tools
including: MATLAB, Simulink, Real-Time Workshop (RTW),
Real-Time Linux Target (RTLT) and Real-Time Windows Target
(RTWT) that are structured in a hierarchical manner3 as shown in
Figure 1. Each of these software components can be executed on
standard PC hardware running on the Linux or Windows operating
systems. Figure 1 illustrates the hierarchical structure of the
CACSD environment along with interfaces to the user and a

2 Quanser recently developed a Simulink/Real-Time Workshop, called
Simulinux-RT, for the Linux operating system.
3 We note that it should be possible to use Quanser’s products to replace
RTWT or RTLT; however, one would need to develop or purchase the
corresponding hardware driver interface.

Figure 1. The CACSD Environment

physical plant. Since MATLAB, Simulink, RTW, RTLT, and
RTWT are the components of the CACSD environment, a brief
description of each component is given as follows.

MATLAB is a software environment [16] that allows a user to
easily integrate computation and visualization tasks. The main
advantage of MATLAB lies in that problems and solutions are
expressed in familiar mathematical notations. Due to the fact that
numerous toolboxes and other software packages have been
developed for MATLAB, it has become the tool of choice for
computation, algorithm development, modeling, simulation, data
analysis, visualization, engineering graphics, and application
development (including graphical user interface (GUI)
development).

Simulink is a software package [16] for modeling, simulating, and
analyzing dynamic systems in the MATLAB environment.
Simulink supports both linear and nonlinear systems that are
modeled in continuous time and discrete time. The Simulink GUI
is used to create block diagram models. Various block-set libraries
provide pre-configured blocks and connectors that can be
incorporated into a model by simple drag and drop operations.
Different types of sources in these libraries allow the user to apply
different inputs. After the model is defined, the user can simulate
the response of the system by selecting the appropriate time
integration method. Simulink also allows for on-line parameter
tuning in order to assess the change in system response. Scopes
and other display blocks allow the user to view the simulation
results while the simulation is still running.

RTW is an automatic C language code generator [16] for
Simulink, which runs within the MATLAB environment. RTW
generates C code directly from the Simulink models and
automatically constructs a file that can be executed in real-time in
various environments. In conjunction with RTW, Simulink
provides a powerful front-end for developing executable code
without requiring a large amount of computer skills. That is, the
block diagram interface of Simulink coupled to the RTW code
generator allows the user to concentrate on the modeling and
control issues as opposed to programming issues.

RTLT is a software package that gives the user the ability to
implement a Simulink block diagram on a standard PC in hard
real-time (i.e., provide a deterministic response). Specifically,
RTLT is a set of source files, device driver libraries, a template
makefile, and a MEX-file interface that uses RTW to

automatically generate C code from a user-defined Simulink block
diagram. The C code is first generated and compiled on a PC
running RT-Linux. A target for running the generated code is then
built on the same PC. During the execution of a Simulink block
diagram, RTLT captures sampled data from one or more input
channels (e.g., A/D channels, digital lines, and encoder lines, etc.)
using standard I/O boards. RTLT then provides the data to the
block diagram model. The Simulink block diagram model then
processes the data accordingly. RTLT then outputs the processed
data via one or more output channels (e.g., D/A channels). A
custom Simulink block library and four different hardware I/O
board drivers are also provided. The user can also observe the
behavior of any signal during or after the real-time run via the
Simulink Scope blocks. If the user builds the Simulink code in the
external mode, the user can perform on-line parameter tuning
during real-time execution.

RTWT is a Windows-based software package that merges the
power of Simulink block diagrams and the C code conversion
ability of RTW into one package that is able to implement a
control algorithm. It has the ability to run Simulink models under
Windows 95/98 or Windows NT 4.0 in real-time on standard PC
hardware. It allows the user to tune control parameters while the
real-time model is running. The Simulink Scope can be used to
monitor the system outputs in real-time; whereas, the data
archiving ability can be used to collect the run time data in a
MAT-file format for later analysis
and visualization in MATLAB.
RTWT provides a good alternative
for those users that would like to
keep a complete The Mathworks,
Inc. solution (the makers of
Simulink, RTW, and RTWT).

Case Study for Resolving the
Standardization Problem: To
illustrate the advantages of the
CACSD software environment
described in the previous sections,
we utilized RTLT along with a
typical undergraduate experiment
(i.e. the inverted pendulum shown
in Figure 2) manufactured by ECP
to perform an example laboratory
exercise. Specifically, we first
worked with QRTS to develop a
software driver4 for the ECP I/O board that facilitates control
prototyping with a Simulink/Real-Time Workshop front-end. We
then developed a simple Simulink block diagram for a
proportional derivative controller that forced the inverted
pendulum to track a square wave reference signal. The Simulink
user interface tools were then used to tune the control gains to
achieve the desired response (see Figure 3).

Based on above experience, it became clear to us that the
standardization problem could be resolved if this process could be
repeated with other plants made by other manufacturers. The main
advantages of this approach are that: the control experiment was
implemented in real-time using a low-cost, standard PC, and the
executable was generated from a Simulink block diagram; hence,

4 This software extension of RTLT is now marketed by QRTS, and it
allows ECP plants to be controlled with a Simulink/Real-Time Workshop
front-end with no hardware modifications

Figure 2. ECP Inverted
Pendulum Experiment

low-level programming skills are not required. To demonstrate
that this approach could be utilized in conjunction with other
plants, we also created new Simulink files and performed similar
experiments using the other plants from ECP (e.g., the Servo
Trainer, Rectilinear, and Torsion experiments). We then repeated
the same process with Feedback plants (e.g., the Helicopter,
Magnetic Levitation, Modular Servo, and Pendulum experiments),
and a Quanser plant (e.g., the Inverted Pendulum experiment). To
illustrate that the above solution to the standardization problem is
not limited to the Linux operating system, we then worked with
QRTS to develop a software interface for RTWT (i.e., a Windows
operating system solution). This approach allowed all of our
previous Simulink files developed under the Linux operating
system to be reused for controlling the ECP plants, Feedback
plants, and the Quanser plant under the Windows operating
system. That is, by using the same Simulink block diagrams with
the I/O blocks replaced by appropriate S-function blocks supplied
by QRTS, we were able to implement the same experiments on a
PC operating under Windows 98 using RTWT. The reader is
referred to [20] for further details with regard to downloading the
Simulink files and the experimental results.

Compatibility Issues with In-House Developed Plants: A potential
compatibility issue may arise if an in-house plant cannot be
interfaced with the Simulink/Real-Time Workshop front-end.
Fortunately, QRTS and Quanser both supplied solutions for the
use of a generic multifunction I/O board for both the Windows and
Linux operating systems. Specifically, QRTS supports both the
MultiQ and ServoToGo I/O boards under both RTLT and RTWT
while Quanser supports the MultiQ and Keithley-Metrabyte I/O
boards under WinCon and SimuLinux. Both the MultiQ and
ServoToGo I/O boards are excellent products that include a wide
range of functionality (see [20] for more information with regard
to functionality of these I/O boards). To illustrate the ease in
which an in-house developed plant can be supported, we
collaborated with Mechatronic Systems, Inc. [17] and QRTS to
develop the necessary hardware/software interface for the
Pendubot [20]. By leveraging off our past experience, it took us
one day to prototype a control for the Pendubot under RTLT with
the ServoToGo I/O board [20]. Due to the availability of the
QRTS developed software interface for the ServoToGo I/O board,
it would be a trivial matter to run the same experiment under
RTWT.

4 The Budget Constraint Issue

Shared Laboratories within a University: The use of shared
laboratories may offer some relief with regard to the budget
constraint issue. That is, leveraging off of the fact that the field of
control systems is multidisciplinary in nature can save funds. As
such, it is quite common for engineering departments (e.g.,
electrical, mechanical, aerospace, chemical, etc.) to
simultaneously offer undergraduate control system courses. These
courses, although sharing some common theoretical content, are
properly adapted to the technical needs of their respective
engineering fields [26]. Due to the multidisciplinary nature of
control, it seems natural to develop educational control labs that
are shared among engineering departments. In addition, the
existing paradigm of individual departmental laboratories seems
difficult to sustain due to the high cost of laboratory equipment
(i.e., the plants, oscilloscopes, voltmeters, actuators, sensors,
computers, I/O boards, etc.) and the increasing demands on faculty
time [26]. As noted in the NSF/CSS workshop [3], shared
laboratories have several financial and pedagogical advantages.

For example, shared laboratories: 1) avoid the duplication of
equipment, and hence, enable the more efficient use of resources,
2) increase the exposure of students to the multidisciplinary nature
of the field, and 3) encourage interaction of faculty and students
across disciplines. One recent implementation of this idea that can
serve as a model for other universities is the experience instituted
in the College of Engineering of the University of Illinois at
Urbana-Champaign. Specifically, an integrated network of
laboratories was designed to service all controls-related courses in
the College of Engineering. A detailed description of this
experience can be found in [26].

Internet Laboratory Concept: Taking the shared laboratory
paradigm a step further, the controls community is also starting to
witness a trend towards the development of Internet-based labs
[10], [12], [19]. The idea is to develop laboratory experiments that
can be remotely accessed and controlled over the Internet. The
primary motivating factor of the Internet laboratory concept is to
enhance the accessibility of laboratory facilities for instructors and
students. That is, an Internet laboratory experience can be used to
accommodate students whose schedules may not conform to the
traditional laboratory model or students who require more time to
complete laboratory work. The Internet laboratory concept also
provides an experimental experience for instructors and students at
universities that may lack the in-house resources. Typical
components of an Internet laboratory include [10]: 1) a physical
plant to be controlled, 2) a control server computer that computes
the control algorithm and handles actuator/sensor signals to/from
the plant as well as all communication with the remote user, 3) a
controlling client computer that allows a remote user to operate
the plant, 4) an Internet connection to link the client computer to
the server computer (e.g., TCP/IP protocol), and 5) experiment
audio, video, and/or animation to give the remote user a sense of
telepresence in the laboratory. To address some of these issues
related to Internet control, Quanser has recently developed
WebLab [4], a graphical interface to WinCon, which offers
distributed control, tuning, and visualization of control systems
through the Internet via a web page based environment.

Obstacles Associated with an Internet-based Control Lab: While
the use of the Internet may save funds with regard to providing a
controls laboratory experience for undergraduates, there are some
obstacles that impede the development of an Internet-based lab.

0 5 10 15 20 25 30

−10

−5

0

5

10

Time (s)

A
ng

le
 (

de
gr

ee
s)

Figure 3. Pendulum Tracking Error

(Desired Position vs. Actual)

As described previously, the operation of Internet labs requires
that the remote user connect to the server computer via a client
computer and an Internet connection. Once connected, most of the
recently developed remote labs [12] only allow users to send set
point commands to the physical plant and perhaps alter the control
gain (i.e., the controller structure remains fixed). This is very
restrictive since the student cannot design and test his/her own
controller. Ideally, an Internet laboratory should allow the student
to design his/her own controller, upload it to the server computer,
and test it on the actual plant. In this scenario, two issues need to
be carefully addressed. First, the server computer should have the
ability to detect and avoid problems (e.g., mistakes when a user
uploads an “unsafe” controller that results in an unstable system or
saturated amplifiers). Second, to the greatest extent possible, the
Internet laboratory system should avoid requiring the installation
of special software on the client computer since compatibility
problems may arise and discourage the student from making the
effort necessary to get the experiment working. Some Internet-
based robotic systems work using a web browser as the human
interface for the remote computer system [11]. Although this
eliminates the need for downloading specialized software, it limits
the prototyping of new control strategies. Another aspect requiring
further investigation is that, due to Internet traffic and bandwidth,
one must take care in developing a system to provide telepresence
features that augment the Internet laboratory experience. Previous
Internet-based robots such as Xavier [23], have only given visual
feedback through a web browser of the robot's status which is
updated every 5-10 seconds. This slow visual update detaches the
end user from a feeling of “being there”. That is, it seems that the
present speed of the Internet requires some sort of hybrid approach
that provides a limited “low-resolution” live video of the
experiment followed by a “high-resolution” downloadable version
of the video.

A New Internet Control Lab Experience: As explained previously,
RTLT and RTWT are software environments that allow the user to
implement a Simulink block diagram in real-time on standard PC
hardware using the RT Linux/Windows operating systems.
Presently, RTLT provides Internet-based control capabilities out
of the box. Specifically, RTLT’s Internet capability is achieved
through the use of the X Window system, which implements a
protocol for network-based windowing. Specifically, the user can
log into a RTLT PC using telnet or rlogin and display an xterm (an
X Windows client) at the user's workstation. MATLAB can then
be started in the xterm, thereby, allowing the user to: 1) create/edit
a Simulink block diagram, 2) compile the Simulink block diagram
using Real-Time Workshop, and 3) execute the compiled code in
real-time. The user may monitor data signals at the remote PC or
workstation using the Simulink scope.5

The performance of the current Internet capability of RTLT is
acceptable on a local area network; however, because of network
traffic, this solution is not practical for use over the Internet. That
is, the use of X Windows to remotely display a real-time plot, such
as the Simulink scope, consumes much more bandwidth than
simply sending decimated log data to the remote user workstation.
In addition, the Internet experience (see Figure 4) will be more
real to the user if: 1) live streaming video of the experiment is
provided as the experiment is operating, 2) a high quality 30 fps
version is provided when the experiment is over, and 3) a live

5 It is important to note that the Internet control experience provided by
RTLT does not require the user to have any MATLAB products running at
the remote machine (i.e., the remote machine only utilizes an X server).

virtual reality (VR) model is animated as the experiment is
operated (i.e., this animation would be directly connected to the
actual plant outputs). The VR animation would allow the
experimenter to examine the system from any viewpoint,
something not possible with a simple fixed camera video. In
addition, the ability to synchronize the video and VR playback
with plots of signals logged during the control would be very
useful, since this capability would allow the experimenter to
correlate the behavior of the physical plant with the variables
being controlled. Although the Windows operating system does
not inherently allow remote access, as does Linux, similar
functionality can be achieved on a Windows platform running
RTWT by installing additional software. One possible option is
Virtual Network Computing that can be downloaded for free from
http://www.uk.research.att.com/vnc/.

REMOTE EXPERIMENT CLIENT PC (REC)INTERNET LAB PC (ILPC)

LINUX

RT-LINUX

ISA/PCI
BUS

STREAMING
VIDEO SERVER

HARDWARE
SERVER

A/D

D/A

ENCODERS

REAL-TIME SIMULINK
MODEL

IMPLEMENTATION EXPERIMENT
SERVER (ES)

WATCHDOG &
MONITORING

30FPS HIGH
QUALITY VIDEO

CAPTURE

30FPS MPEG-2
HARDWARE

ENCODING BOARD

VIDEO CAMERA

LOW COST
FRAMEGRABBER

I/O BOARD

SIMULINK

VIDEO

VIDEO

FRAMES

FRAMES

FRAMES

GENERIC PLANT

STREAMING
VIDEO

DURING
CONTROL

30FPS HIGH
QUALITY

VIDEO AFTER
CONTROL

X
WINDOWS
PROTOCOL

INTERNET

PLOTS

X SERVER

REMOTELY DISPLAYED
SIMULINK

30FPS HIGH QUALITY VIDEO DISPLAY

STREAMING VIDEO DISPLAY

VR DISPLAY

Figure 4. Internet Control Laboratory Setup

Some Solutions to Problems Associated with an Internet-based
Control Lab: In essence, the use of remote operation has the
advantage of: 1) reducing costs by sharing laboratory equipment,
2) allowing users to have greater oversight of the control
implementation, and 3) allowing access to facilities 24 hours per
day. Although the benefits of remote operation are monumental,
there are also drawbacks to such activity. Any type of computer
system that allows free access is vulnerable to hacking. To
maximize security, users can be forced to use local copies of
Simulink to create models, which should then be uploaded to the
Internet Laboratory PC. All interactions between the Internet
Laboratory PC and the user’s workstation can then be
implemented through communication protocols (this method
limits what users are able to do on the Internet Laboratory PC). In
addition to security concerns, there is no guarantee that the user's
code is error free. For example, the user’s code may contain
syntax errors, undefined variables, or calculation errors that may
result in an unstable closed-loop system (i.e., excessive voltage
may be commanded and/or violent oscillations may occur). To
address these issues, the community needs to investigate using a
switching control strategy that detects situations in which the
user’s controller is determined to be “unsafe”. If an unsafe control
situation is detected, the safe controller is switched on and the user
is notified that his/her controller has failed; hence, system
robustness is assured while allowing maximum flexibility for the
user. One also needs to ensure that all Internet experiments are

self-resetting, so that the system will be able to reboot itself and
resume operation without local human intervention.

5 Cost Comparison

In writing a paper like this, we also need to mention some issues
related to cost and real-time performance. For comparison
purposes, we first note that the cost of a Quanser solution for
Windows NT would run about $1,227 dollars per seat while the
cost of a Mathworks solution would be about $150 dollars per seat
(All of the price quotes in this paper are calculated based on the
Mathworks classroom kit pricing structure for less than 25 copies).
We also note the cost of a fully supported Quanser SimuLinux
solution would be about $527 dollars per seat while the cost of a
fully supported QRTS RTLT solution would be approximately
$682 dollars per seat. Based on the above pricing structure, we
believe that RTWT will become the real-time computation engine
of choice for undergraduate laboratory instruction. That is, while
WinCon, SimuLinux, and RTLT have some advantages over
RTWT, it seems that it will be very difficult for any third party
company to compete with Mathworks’ pricing scheme as far as
undergraduate laboratory instruction is concerned. In addition,
since Mathworks provides software interfaces for many generic
I/O boards that can be used with in-house developed plants, and
several vendors of commercially available plants (e.g., Feedback
and ECP) are providing RTWT software interfaces for their
equipment, it seems inevitable that RTWT will become the
standard real-time engine for undergraduate control laboratories.

6 Real-Time Performance

With regard to real-time performance, we were initially very
skeptical about the use of RTWT. This skepticism was due to the
fact that we could not find any information regarding how
Mathworks ensures some measure of real-time performance under
Windows 98 and Windows NT. We should note that we really do
not know how WinCon accomplishes real-time performance under
Windows 98; however, we note that Quanser ensures real-time
performance under Windows NT with the VenturCom software
extensions (see [28]). To examine the real-time performance of
RTWT from a control point of view, we have recently completed
some relatively sophisticated robot control experiments with
RTWT. Specifically, we have performed the same control
experiments using both RTLT and RTWT for a six degree-of-
freedom robot manipulator. We achieved the same performance
(i.e., the performance measured by the link tracking error) for both
RTLT and RTWT. Since we know that RTLT provides very good
real-time performance by using a hard real-time extension of
Linux, we are becoming less skeptical about the use of RTWT.
Perhaps, WinCon (with the VenturCom extensions), SimuLinux,
and RTLT with their guaranteed hard real-time performance and
other advantages6 will remain attractive alternatives for the control
researcher or industrial user who demands hard real-time
performance as well as a Simulink/Real-Time Workshop front-
end.

7 Conclusion

In this paper, we discussed the standardization of CACSD
software tools for undergraduate control laboratory development.

6 WinCon, SimuLinux, and RTLT possess several advantages over RTWT
(e.g., WinCon has superior plotting features in comparison to the Simulink
scope); however, a discussion of these advantages was deemed beyond the
scope of this paper.

Specifically, the proposed approach advocates the use of
MATLAB compatible products to standardize the execution of
controllers in real-time using standard, low-cost PC hardware. To
illustrate the feasibility of the approach, we discussed the
development of a Simulink/Real-Time Workshop front-end for a
specific ECP plant. We then described how other commercially
available plants could be back-fitted with no hardware
modifications. To address the issue of reducing the cost associated
with control laboratory development, we presented some new
concepts with regard to using Internet-based laboratory
experiments.

8 References

[1] Advanced Realtime Control Systems, Inc. http://www.arcsinc.com.
[2] S. K. Agrawal, “Undergraduate Control Education: An ME

Perspective”, Proc. of the Am. Cont. Conf., pp. 983-986, June 1999.
[3] P. Antsaklis, T. Basar, R. DeCarlo, N. H. McClamroch, M. Spong, and

S. Yurkovich, “Report on the NSF/CSS Workshop on New Directions
in Control Engineering Education”, IEEE Cont. Sys. Mag., Vol. 19,
No. 5, pp. 53-58, Oct. 1999.

[4] J. Apkarian and A. Dawes, “Interactive Control Education with Virtual
Presence on the Web”, Am. Cont. Conf., pp. 3985-3990, June 2000.

[5] Y.-C. Chen and J. Naughton, “An Undergraduate Laboratory Platform
for Control System Design, Simulation, and Implementation”, IEEE
Cont. Sys. Mag., Vol. 20, No. 3, pp. 12-20, June 2000.

[6] dSpace Inc., http://www.dspaceinc.com.
[7] Educational Control Products, http://www.ecpsystems.com.
[8] Extra Dimension Technologies, http://www.xdtech.com.
[9] Feedback, Inc., http://www.fbk.com.
[10] H. H. Hahn and M. W. Spong, “Remote Laboratories for Control

Education”, IEEE Conf. on Dec. and Cont., pp. 895-900, Dec. 2000.
[11] H. Hirukawa and I. Hara, “Web-Top Robotics”, IEEE Rob. & Auto.

Mag., pp. 40-45, June 2000.
[12] http://chem.engr.utc.edu.
[13] HUMUSOFT, http://www.humusoft.com.
[14] V. Kapila, M. S. de Queiroz, and A. Tzes, “A Multidisciplinary

Undergraduate Real-Time Experimental Control Laboratory”, Proc. of
the Am. Cont. Conf., pp. 3980-3984, June 2000.

[15] N. A. Kheir, K. J. Astrom, D. Auslander, K. C. Cheok, G.F. Franklin,
M. Masten, and M. Rabins, “Control Systems Engineering Education”,
Automatica, Vol. 32, No. 2, pp. 147-166, Feb. 1996.

[16] The Mathworks, Inc., http://www.mathworks.com.
[17] Mechatronic Systems, Inc., http://www.prairienet.org/msi.
[18] Opal-RT, http://www.opal-rt.com.
[19] J. Overstreet and A. Tzes, “An Internet-Based Real-Time Control

Engineering Laboratory”, IEEE Cont. Sys. Mag., Vol. 9, No.5, pp. 19-
34, Oct. 1999.

[20] Quality Real-Time Systems, http://www.qrts.com.
[21] Quanser Consulting, Inc., http://www.quanser.com.
[22] Shandor Motion Systems, http://www.shandor.com.
[23] R. Simmons, J. L. Fernandez, R. Goodwin, S. Koenig, J. O'sullivan,

“Lessons Learned from Xavier”, IEEE Rob. & Auto. Mag., pp. 33-39,
June 2000.

[24] L. Sha, “Dependable System Upgrades”, IEEE Real Time Systems
Symp., Pozan, Poland, Dec. 1998.

[25] M. W. Spong and D. J. Block, “The Pendubot: A Mechatronic System
for Control Research and Education”, IEEE Conf. on Dec. and Cont.,
pp. 555-556, Dec. 1995.

[26] M. W. Spong, “Control Education Crossing Department Boundaries”,
Proc. of the Am. Cont. Conf., pp. 992-996, June 1999.

[27] F. C. Teng, “Implementation of Real-Time Fuzzy Logic Controller
using MATLAB Based Software: A Review”, 6th Int. Conf. on Cont.,
Auto., Rob. and Vision. 5-8, Dec. 2000.

[28] VenturCom, Inc., http://www.vci.com.
[29] Z. Yao, N. P. Costescu, S. P. Nagarkatti, and D. M. Dawson, “Real-

Time Linux Target: A MATLAB-Based Graphical Control
Environment”, IEEE Conf. on Cont. App., pp. 173-178, Sept. 2000.

