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Design and Demonstration of an Atomic Scale
Nanomachine at Room Temperature




* Development of techniques to implement:

(a) controlled motion
(b) controlled fueling
(c) controlled friction (lubrication)

e Experimental implementation of steered motion

e Experimental implementation of friction control



Thereis no mechanical nano-machinery without:
 Control and manipulation of motion
 Controlled supply of energy (fueling)

 Control of nano-machine operation cannot be implemented by AFM or
any other tunneling scanning device (AFM is not a part of a device)

- Controlled manipulation of motion at the nanoscale
has not been yet achieved



Controlled operations will be implemented
using surface vibrations

Control input: amplitudes and frequencies of
vibration

We will use two types of algorithms:

(a) applying feedforward control technigues
using the knowledge of equations of motion
(b) neural network learning



While it is true that nanocrystals have Dbeen
manipulated at surfaces by others, and nanotubes have
been used as AFM tips by others, the point of this
research is very different. We propose, for the first
time, practical methods to manipulate (a) ‘soft’ objects
such as atomic clusters, which it is impossible to
manipulate by the traditional methods; and (b)
‘collective’ structures’ rather than the brute-force
manipulation imparted to a solid object by an AFM tip.



Radius of particle ~ 3-4 nm
Radius of tip ~ 10-20 nm

Size of object > 20~ 40
nm in each dimension
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Unique device of UIUC (S. Granick)

TSt

Sender bimorph

Receiver bimorph

Normal force
assembly Sender bimorph

Frequency: 0.1-300Hz . :
Amg”tudg 0.5-105 A Unique independent control of

frequency, velocity, film
thickness, and load




Evaporate liquid containing Au-
clusterscoated with a carboxylic
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— Force fields (interactions between atoms)

» Derived from quantum chemistry and/or fitting of classical formsto
experiment

» Forcefieldsfor systems of
* interest to thisproject exist
* inliterature

— Computational cost; :

— Cummings group has
e extensive experiencein
o paralelizing MD codes




« MD simulations
— Performed by solving dynamical equations of motion for atoms
» Direct routeto dynamical information at nanoscale

* Powerful tool for under standing experimental obser vations on nanoscale
systems

» Possiblerouteto data and insightsthat areinaccessible experimentally
— useof (1) carbon nanotube asAFM tip

— (2) surfacetransport of nanoparticles (Au-140 adsor bed on
graphite), (3) nanotribology



Friction is ruled by robust dynamics

good qualitative agreement between variety of
models and types of interaction potentials used for a
model

— choice of parameters may be even more important
than the choice of a model !!!

— Initial conditions !



e Has been obsarved from the nano - to macro scales - from
the atomic scale to earthquakes.
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e Single - particle e Collective dynamics
dynamics

Very limited correlation Propagation of well defined
between particles in array moving structures

High temperature
(high noise)
Large external forcing
Small coupling

Small-medium forcing
Large-intermediate coupling
Reasonable noise/disorder



Collective Dynamics

Understanding collective dynamics is the key issue
It has not been studied before in regard to friction

There exist a link from collective motion to friction

H. G. E. Hentschel, F. Family, and Y. Braiman, PRL 83, 104 (1999).
Y. Braman, F. Family, H. G. E. Hentschel, C. Mak, and J. Krim, PRE 59, R4737 (1999).

M. Porto, M. Urbakh, and J. Klafter, Europhysics Lett. 50, 326 (2000).

M. Porto, M. Urbakh, and J. Klafter, J. Phys. Chem. B 104, 3791 (2000).
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phase synchronization

The better the array is phase synchronized - the faster it moves !



We define phase synchronization as the inverse of the fluctuations s
from the center of mass motion

lT\\/élj\l(Xj ) Xav)2
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Small size and confinement

The outcome b Propagation modes
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H. G. E. Hentschdl, F. Family, and Y. Braiman, PRL 83, 104 (1999)

Each mode is characterized by
different frictional behavior
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Simulations using F-K model show that for intermediate to high values
of the coupling and small applied force

It is possible to scale the position at which these maximum velocity
jumps occur using the size N of the array and the coupling k.

At low enough values of the coupling a transition back to synchronous
motion occurs independent of system size N.

K (N) ~ (N /m)°



mX; +gx; =- U/, - IV/IX; + f; +h;

mx = - k(x- vt) - F, mk=k(M- X)- Fy

F,=q+bx Fo=F, +DR(1- exp(-f /1)) +gX

0 =@ - Gin) G - @)/ - (@ - Q)% | [ =125 /D

Carlson and Batista, PRE 53, 4153 (1996) Persson, PRB 55, 8004 (1997)

Friction isruled by robust dynamics
Good qualitative agreement between variety of models and types of
Interaction potentials used for a model choice of parameters may be

even moreimportant than the choice of a model !!!
Initial conditions'!



mX, +gX, =-TU /X, - IV/IX, + f, +h,




We separate the center of mass motion of array from
spatiotemporalfluctuations (which only dissipate energy)

X o (1) = X (1) +dX , (1)
where < dX(t) > = 0 by construction

Keeping fluctuations small, the center of mass obeys

X +gX +sin( X)[1- <dX?2>/2]= f

The spatiotemporal fluctuations obey

dX,+gdX,+Ccos( X)dX, =k (dX, ;- 2dX, +dX . ;)




We make the Fourier decomposition
— 8 2pimn /' N
dX, (t) = & dX ., (t)e®
m

and equations of motion for the modes

dX ., +gdX,, +[WZ +C cos( X)]dX,, =0
where W =2k sin(pm/N)

Shows parametric forcing when W, =wW/2



We assume that the main mechanism for the energy transfer from

the center of mass motion to the spatiotemporal fluctuations in the array is
due to a subharmonic parametric resonance.

O_

Power spectrum S(w)

T T T T T T T T T T T
0 1 2 3 4 5

frequency w

We have made a self-consistent approximation by replacing nonlinear terms
by a quasilinear term.

C = JLMLl+2<dX 2 >]




If we look for a solution for the m’th mode of the form

] < mode # 1
dXp =bySn(wt/2+by) g |
we then find: ;;1-0.5- mode # 2
< N
Only one mode can exist at a time. e

particle number

There are N such solutions. Each is spatially coherent with a different
center of mass velocity and different amplitude fluctuations.

As the spatial fluctuations b, increase, phase synchronization decreases,
and so the average center of mass velocity decreases.



If we look for a solution for the m’th mode of the form

: N =25
dX = b Sn(wt/2+b,)
42\ 1.0- : mode#1 "
‘O mofle #3 ./.
and the center of mass motion Is % : ' // /
described by > 08 ] -
| o | 1/ 7
X = X +wt+ Bsn(wt) = o6 : / r_/
> :
then the velocity of the center of g | \_/
mass is g o4
0 2 4 6 8 10 12
v, =(f/g)/[(1+ 52/2) + bi/S] stiffness

H. G. E. Hentschdl, F. Family, and Y. Braiman, PRL 83, 104 (1999)



e Time series of the fluctuations
! from the center of mass f(s) for

(o) different amounts of disorder.

1

The inset shows the average
fluctuations from the center of
mass as the function of the
velocity of the center of mass.

0 300 600 800

Y. Braman, F. Family, H. G. E. Hentschel,
C. Mak, and J. Krim, PRE 59, R4737 (1999)



friction coefficient

10 -

Friction coefficient can be significantly reduced
(by orders of magnitude) when sliding on irregular surfaces

00 01 02 03 04
amount of disorder

Y. Braman, F. Family, H. G. E. Hentschel,
C. Mak, and J. Krim, PRE 59, R4737 (1999)



Disorder - Enhanced Synchronization
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Time series of positions of all the particles in N=25 particle array for:
(a) the identical array; ( b ) 20% of disorder;
(c) 25 % of disorder; (d ) 30 % of disorder
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the identical array.

The middle curve corresponds to
to the arrays with 20% of
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array with 30% of disorder.

The inset shows the average
velocity of the center of mass as
a function of the amount of
disorder

Y. Braman, F. Family, H. G. E. Hentschel,
C. Mak, and J. Krim, PRE 59, R4737 (1999)



Disorder Induced Depinning
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Cumulative slip time distribution
for the array.

The bottom curve corresponds
to the identical array.

The middle curve corresponds to
s = 2.5%.

The top curve corresponds to
s = 5%.

Y. Braman, F. Family, H. G. E. Hentschel,
C. Mak, and J. Krim, PRE 59, R4737 (1999)




Velocity of the center of mass as the function
of the surface vibration frequency.

Y. Braiman and V. Protopopescu, (in preparation)

Amp =0.1

velocity of the center of mass

0 1000 2000 3000 4000
time

M. Heuberger, C. Drummond, and J. Israelachvili, J. Chem. Phys. B 102, 5038 (1998),
J. Gao, W. D. Luedtke, and U. Landman, J. Phys. Chem. B 102, 5033 (1998);

M. G. Rozman, M. Urbakh, and J. Klafter, Phys. Rev. E 57, 7340 (1998);

F.-J. EImer, Phys. Rev. E 57, R4903 (1998).
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Nanoscale arrays can exhibit a variety of modes of motion with
different degrees of spatial coherence which affects frictional
properties of the array

Spatiotemporal fluctuations in small discrete nonlinear arrays
affect the dynamics of the center of mass. Here we presented
numerical evidence indicating that phase synchronization is
related to the frictional properties of such sliding atomic scale
objects.

We discussed mechanisms and implementation of how the
resulting atomic scale friction can be tuned with noise,
guenched disorder, and surface vibrations.



¢ Nanomachine operation controlled and fueled by surface vibrations
and/or carbon nanotube

— room temperature operation

¢ Development of new class of control of motion and fueling techniques
that exploit directly the collective properties of the device dynamics

— wewill exploit:
— device dynamics to navigate motion and fueling

— neural net learning
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