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Technical Objective

 Design and Demonstration of an Atomic Scale
Nanomachine at Room Temperature

 (a) Control Friction (Lubrication)
• (b) Steer Motion (Translational and Rotational)
• (b) Supply Energy (Fueling)



Outline

• Development of techniques to implement:

 (a) controlled motion
 (b) controlled fueling
 (c) controlled friction (lubrication)

• Experimental implementation of steered motion

• Experimental implementation of friction control



Relevance

  There is no mechanical nano-machinery without:

• Control and manipulation of  motion

• Controlled supply  of energy (fueling)

• Control of nano-machine operation cannot be implemented by AFM or
any other tunneling scanning device (AFM is not a part of a device)

• Controlled manipulation of motion at the nanoscale
has not been yet achieved



Techniques for Controlled Operations

Controlled operations will be implemented
using surface vibrations

Control input: amplitudes and frequencies of
vibration

We will use two types of algorithms:
(a) applying feedforward control techniques
using the knowledge of equations of motion
(b) neural network learning



Novelty

While it is  true that nanocrystals have been
manipulated at s urfaces  by others , and nanotubes have
been used as AFM tips  by others , the point of this
research is  very different.  We propos e , for the firs t
time, practical methods  to manipulate (a) ‘s o ft’ objec ts
such as atomic clus ters , which it is  impos s ible to
manipulate by the traditional methods ; and (b)
‘co llec tive’ s truc ture s ’ rather than the brute -forc e
manipulation imparted to a s o lid objec t by an AFM tip.



Radius of particle ~ 3-4 nm

Radius of tip ~ 10-20 nm

Size of object > 20 ~ 40
nm in each dimension

Experimental Setting for Motion 
Steering and Fueling

Mica/HOPG/
QCM

Vibrating body



Novel Motion Actuator

Mica/HOPG

Carbon
nanotube

Vibrating surface



Shear force
 assembly

Normal force 
  assembly Sender bimorph

Receiver bimorph
Sender bimorph

Frequency: 0.1-300Hz
Amplitude: 0.5-105 Å

Experimental Friction Control

Unique device of UIUC (S. Granick)

Unique independent control of
frequency, velocity, film

thickness, and load



Image ensemble
of particles with the AFM
tip. Identify object of
interest, along with internal
and external references.

Apply
external
stimulus with
the AFM tip.

Evaporate liquid containing Au-
clusters coated with a carboxylic
acid-terminated alkanethiol
on surfaces.

Reimage object
and
characterize
change  in
relative
distances.

Use control algorithms
to calculate the the next
stimulus.

Schematic showing a typical sequence of experiments

Use control
algorithm to
calculate the
nature and
amplitude of
surface
vibrations.

Apply
controlled
vibrations
to the
surface.



Molecular Dynamics Simulations

– Force fields (interactions between atoms)
• Derived from quantum chemistry and/or fitting of classical forms to

experiment
• Force fields for systems of
•  interest to this project exist
• in literature

– Computational cost; :
– Cummings group has

• extensive experience in
• parallelizing MD codes



Molecular Dynamics Simulations

• MD simulations
– Performed by solving dynamical equations of motion for atoms

• Direct route to dynamical information at nanoscale
• Powerful tool for understanding experimental observations on nanoscale

systems
• Possible route to data and insights that are inaccessible experimentally

– use of (1) carbon nanotube as AFM tip
– (2) surface transport of nanoparticles (Au-140 adsorbed on

graphite), (3) nanotribology



Friction

 Friction is ruled by robust dynamics

 good qualitative agreement between variety of
models and types of interaction potentials used for a
model

– choice of parameters may be even more important
than the choice of a model !!!

– Initial conditions !



Stick-Slip Dynamics

• Has been observed from the nano - to macro scales - from
the atomic scale to earthquakes.
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Both periodic and chaotic
stick-slip dynamics have
been observed



Different Regimes of Motion

• Single - particle
dynamics

• Collective dynamics

Very limited correlation
between particles in array

Propagation of well defined
moving structures

High temperature
(high noise)

Large external forcing
Small coupling

Small-medium forcing
Large-intermediate coupling
Reasonable noise/disorder



Collective Dynamics

Understanding collective dynamics is the key issue

It has not been studied before in regard to friction

There exist a link from collective motion to friction

H. G. E. Hentschel, F. Family, and Y. Braiman, PRL 83, 104 (1999).

Y. Braiman, F. Family, H. G. E. Hentschel, C. Mak, and J. Krim, PRE 59, R4737 (1999).

M. Porto, M. Urbakh, and J. Klafter, Europhysics Lett. 50, 326 (2000).

M. Porto, M. Urbakh, and J. Klafter, J. Phys. Chem. B 104, 3791 (2000).



  Key Issue ⇒   Phase Synchronization

The better the array is phase synchronized - the faster it moves !
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Phase Synchronization

We define phase synchronization as the inverse of the fluctuations σ
from the center of mass motion
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Locking of the Temporal and Spatial
Dynamics (Modes)

Small size and confinement
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The outcome  ⇒  Propagation modes

Each mode is characterized by
different frictional behavior
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H. G. E. Hentschel, F. Family, and Y. Braiman, PRL 83, 104 (1999)



Nonlinear Friction Selection

• Simulations using F-K model show that for intermediate to high values
of the coupling and small applied force

 a series of quantized transitions in the maximum
  propagation velocity occur.

• It is possible to scale the position at which these maximum velocity
jumps occur using the size N of the array and the coupling κ.

• At low enough values of the coupling a transition back to synchronous
motion occurs independent of system size N.

2( ) ~ ( / )m N N mκ



Friction Models

Persson, PRB 55, 8004 (1997)
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/ /j j j j j jmx x U x V x fγ η+ = −∂ ∂ − ∂ ∂ + +&& &

Friction is ruled by robust dynamics
Good qualitative agreement between variety of models and types of
interaction potentials used for a model choice of parameters may be
even more important than the choice of a model !!!
Initial conditions !

Persson, PRB 55, 8004 (1997)



Theoretical Modeling

• Phenomenological models
• F-K-Tomlinson model

/ /j j j j j jmX X U X V X fγ η+ = −∂ ∂ − ∂ ∂ + +&& &

m is the mass of the sliding particle
γ is the dissipation coefficient
U is the interaction potential

V is surface potential
f is the external driving force

η is the thermal noise (temperature effect)



Dynamics of Propagating Arrays

We separate the center of mass motion of array from
spatiotemporalfluctuations (which only dissipate energy)

)()()( tXtXtX nn δ+=

where < δXn(t) > = 0 by construction

Keeping fluctuations small, the center of mass obeys

fXXXX n =><−++ ]2/1)[sin( 2δγ &&&
The spatiotemporal fluctuations obey

)  2 ( )cos( 11 −+ +−=++ nnnnnn XXXXXCXX δδδκδδγδ &&&



Resonant Parametric Forcing

We make the Fourier decomposition

Nimn

m
mn etXtX /2)()( πδδ ∑=

and equations of motion for the modes

0)]cos([ 2 =+Ω++ mmmm XXCXX δδγδ &&&

where )/sin(2 Nmm πκ=Ω

Shows parametric forcing when 2/ω=Ωm



Assumptions

We assume that the main mechanism for the energy transfer from
the center of mass motion to the spatiotemporal fluctuations in the array is
due to a subharmonic parametric resonance.

We have made a self-consistent approximation by replacing nonlinear terms
by a quasilinear term.
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Spatial Coherence and Mode Selection

If we look for a solution for the m’th mode of the form

)2/sin( mmm tbX βωδ +=

we then find:

Only one mode can exist at a time.

There are N such solutions. Each is spatially coherent with a different
center of mass velocity and different amplitude fluctuations.

As the spatial fluctuations bm increase, phase synchronization decreases,
and so the average center of mass velocity decreases.
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Velocity of the Center of Mass

If we look for a solution for the m’th mode of the form

)2/sin( mmm tbX βωδ +=

and the center of mass motion is
described by

)sin(0 tBtXX ωω ++=
then the velocity of the center of

mass is
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H. G. E. Hentschel, F. Family, and Y. Braiman, PRL 83, 104 (1999)



Time series of the fluctuations
from the center of mass f(σ) for
different amounts of disorder.

The left-hand part of the plot
corresponds to the identical

array.
 The middle part corresponds to

σ=15%.
The right-hand part corresponds

to σ=30%.
The inset shows the average
fluctuations from the center of

mass as the function of the
velocity of the center of mass.

Sliding is Faster for a Better Synchronized Array

Y. Braiman, F. Family, H. G. E. Hentschel, 
C. Mak, and J. Krim, PRE 59, R4737 (1999)



Sliding on Disordered Substrate

Friction coefficient can be significantly reduced
 (by orders of magnitude) when sliding on irregular surfaces
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Disorder - Enhanced Synchronization

Time series of positions of all the particles in N=25 particle array for:
( a ) the identical array; ( b ) 20% of disorder;
( c ) 25 % of disorder; ( d ) 30 % of disorder

(a) (b)

(c) (d)

Vcm=0.05Vcm=0.05

Vcm=0.146
Vcm=0.258



The position of a particle #12
 in array as a function of time.

The bottom curve corresponds to
the identical array.

The middle curve corresponds to
to the arrays with 20% of

disorder,
The top curve corresponds to the

array with 30% of disorder.

The inset shows the average
velocity of the center of mass as

a function of the amount of
disorder

Sliding is Faster on Disordered Surfaces

Y. Braiman, F. Family, H. G. E. Hentschel, 
C. Mak, and J. Krim, PRE 59, R4737 (1999)



Cumulative slip time distribution
for the array.

The bottom curve corresponds
to the identical array.

The middle curve corresponds to
σ = 2.5%.

The top curve corresponds to
σ = 5%.

Disorder Induced Depinning

Y. Braiman, F. Family, H. G. E. Hentschel, 
C. Mak, and J. Krim, PRE 59, R4737 (1999)



Friction Control by Surface Vibrations
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J. Gao, W. D. Luedtke, and U. Landman, J. Phys. Chem. B 102, 5033 (1998);
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Theoretical Demonstration of the Effect of
Surface Vibrations
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Velocity is controlled by the amplitude of surface vibrations.

Y. Braiman and V. Protopopescu, (in preparation)

Identical vibration amplitudes Random vibration amplitudes



Transition to Sliding Behavior
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Summary

• Nanoscale arrays can exhibit a variety of modes of motion with
different degrees of spatial coherence which affects frictional
properties of the array

• Spatiotemporal fluctuations in small discrete nonlinear arrays
affect the dynamics of the center of mass. Here we presented
numerical evidence indicating that phase synchronization is
related to the frictional properties of such sliding atomic scale
objects.

 

• We discussed mechanisms and implementation of how the
resulting atomic scale friction can be tuned with noise,
quenched disorder, and surface vibrations.



Future Research

u Nanomachine operation controlled and fueled by surface vibrations
and/or carbon nanotube
– room temperature operation

u Development of new class of control of motion and fueling techniques
that exploit directly the collective properties of the device dynamics
– we will exploit:
– device dynamics to navigate motion and fueling
– neural net learning
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