
On General Quickest Path Problem and Path-Tables

Nageswara S.V. Rao Nachimuthu Manickam
Computer Science and Mathematics Division Department of Mathematics

Oak Ridge National Laboratory DePauw University
Oak Ridge, Tennessee, USA Greencastle, Indiana, USA

February 26 - March 2, 2001
32nd Southeastern International Conference on
Combinatorics, Graph Theory and Computing

Baton Rouge, Louisiana

Research Sponsored by
Laboratory Directed Research and Development Program

Oak Ridge National Laboratory
and

Defense Advanced Research Projects Agency

1

Outline

1. Introduction

1.1 QOS Requirements and Routing Problems

1.2 Bandwidth Reservation Framework

2. Generalized Quickest Path Problem

2.1 Quickest Path Problem

2.2 Minimum End-to-End Delay Algorithm

3. Path-Table

3.1 Quickest Paths

3.2 Path-Table Size Estimation

4. Conclusions

2

End-to-End Requirements

Next Generation of Computer Networks:

Users require routes with end-to-end delay/rate guarantees

Scenario 1:

Physician retrieves x-ray or CATSCAN image from a remote site.

Scenario 2:

Mobile robot team explore a building for radiation/humans

Scenario 3:

Law enforcement oÆcer retrieves all information of a person onto a hand-held computer from
a repository.

Scenario 4:

Movie/video on-demand over a computer network

Present-Day Networks:

Routing methods do not provide deterministic guarantees on end-to-end delay

In a nutshell:
New algorithms and mechanisms are needed to provide guarantees

3

General Quickest Path Problem

Given: computer network G = (V;E)
available bandwidths b(e), for link e 2 E
link-delays d(e), for link e 2 E
queuing delay qv(r), for node v 2 V , for message size r

Message Transmission Problem:

Compute a path to send message of r units
from s to d with minimum end-to-end delay

Note:

1. This is a simple but very important transmission problem
2. No polynomial-time algorithms are known

| related problems are studied in
networking, operations research, and transportation

3. Known algorithms:
(a) solve restricted versions
(b) provide soft bounds for more complicated tasks

4

Bandwidth Reservation Framework

Features:

Source-Based Algorithm:

| Available bandwidth at all links is centrally known

Wait While Compute:

| Bandwidth is put \on hold" while paths are computed

Guaranteed bandwidths:

| Once reserved, bandwidth is held available for the period

Requirement:

Time complexity of the routing algorithm must be low

Justi�cation:

1. Simple to implement
2. Can be naturally supported on ATM networks
3. One of the few mechanisms to provide end-to-end guarantees
4. Provides valuable insight into more complicated mechanisms

5

Path Delays

Simple Path: (v0; v1); (v1; v2); : : : ; (vk�1; vk):
End-to-End delay for message size r:

t(r; P) = g

r;

k�1
min
j=0

b(ej)

!
+

k�1X
j=0

d(ej) +
k�1X
j=0

qvj (r)

where ej = (vj; vj+1);

g

r;

k�1
min
j=0

b(ej)

!
is delay due to bandwidth;

k�1P
j=0

d(ej) is delay due to link-delays; and

k�1P
j=0

qvj (r) is the queuing delay.

Notation:

delay: d(P) =
k�1P
j=0

d(ej)

bandwidth: b(P) =
k�1
min
j=0

b(ej)

queuing: q(r; P) =
k�1
min
j=0

qvj (r)

t(r; P) = g(r; b(P)) + d(P) + q(r; P)

6

Quickest Path Problem

Given: computer network G = (V;E)
available bandwidths b(e), for link e 2 E
link-delays d(e), for link e 2 E
Special case:

No queuing delay: qv(r) = 0, for all v 2 V
Simple bandwidth: g(r; b(P)) = r=b(P)

t(r; P) = r=b(P) + d(P)

Note:
1. Well-known problem; Chen and Chin (1990), Rosen et al (1991)
2. Solved with time complexity (cm + cn logn)

c: number of distinct bandwidths

7

massage size

solved by shortest paths our algorithm

very small messages large messages

both delay and bandwith bandwidth is dominant constraint

are dominant constraints

solved by shortest widest paths

delay is dominant constraint

Special Case: E�ect of Message Size

Important Special Case: t(r; P) = r=b(P) + d(P)
{ simple bandwidth and delay constraints
{ no queuing delay
{ popularly known as the quickest path problem
Low values of r: MTP solved by shortest path
| total delay is dominated by delay alone

r < min
distinct P1;P2

B1B2(D2 �D1)

B2 �B1

High values of r: MTP solved by shortest-widest path
| total delay is dominated by delay alone

r > max
distinct P1;P2

B1B2(D2 �D1)

B2 �B1

Main Point:
For end-to-end delay both bandwidth and delay are important.

8

Example

Network: Three disjoint paths only P1; P2 and P3,
Di = d(Pi) and Bi = b(Pi), i = 1; 2; 3
D1 < D3 < D2 and B1 < B3 < B2

Shortest path based only on link-delays: P1

Shortest-widest path: P2

| P3 is neither

Total delay is minimized by P3 for the message size

B1B3(D3 �D1)

(B3 � B1)
< r <

B2B3(D2 �D3)

(B2 �B3)

9

Minimum End-To-End Delay

t(r; P) = g(r; b(P)) + d(P) + q(r; P)

= g

r;

k�1
min
j=0

b(ej)

!
+

k�1X
j=0

d(ej) +
k�1X
j=0

qvj (r)

In comparison with quickest path problem:

| Queuing delays are non-zero;
| Bandwidth delays:

decrease with bandwidth and increase with message size r
i.e. g(r; b) non-decreasing with r and non-increasing with b

10

Path Computation Algorithm

fb1; b2; : : : ; bcg: distinct values of the bandwidths b(e), e 2 E.

G(a) = (V;E(a)): subnetwork where e 2 E(a) if and only if b(e) � a.

Augmented Delay of an edge e = (v1; v2):
dA(e) = d(e) + qv1(r)

s� d shortest path in G(a):
shortest delay path based only on the augmented delay of edges

algorithm Min-Path(r)
1. for j = 1; 2; : : : ; c, compute s� d shortest path Pj in G(bj);
2. compute index k which minimizes

fg(r; b(Pj)) + d(Pj) + q(r; Pj)jj = 1; 2; : : : ; cg;
3. return Pk as the path with the minimum end-to-end delay;

| Path with minimum end-to-end delay can be computed in
O(cm+ cn logn) time
c: number of distinct bandwidths
Same complexity as quickest path algorithm

11

Path-Table: Quickest Path Problem

Basic Idea:

Partition range [1;1] of r into intervals such that:
each interval has a single path with minimum end-to-end delay

Computation:

Path-table has q � m entries:
for any message size r, path with minimum end-to-end delay can be retrieved in O(logn)
time.

algorithm Compute-Table(PL, rL, PR, rR)
1. compute intersection size rI ;
2. PI minimum delay path for message size rI

computed using step 2 of algorithm Min-Path;
3. if [D(PI) = D(PL) and B(PI) = B(PL)] or

[B(PI) = B(PR) and B(PI) = B(PR)] then
4. Path[rL; rI] PL; Path[rI ; rR] PR;
5. else

6. Compute-Table(PL; rL; PI ; rI);
7. Compute-Table(PI ; rI ; PR; rR);

| Rao and Batsell (1997)
| Time complexity O(cq + cm+ cn logn)

12

Path-Table in General Case

Path-Table:
| can be of in�nite size for compact range for r
| even when g(r; b) is monotone

f

f

0

0

1

I
0

I
1

1/2

1/2

1

12/3

3/4

2

13

Smooth Delay Functions

Under additional conditions:

(i) t(:; P)'s are continuous, and
(ii) no two of them intersect in more than s points,

We have:

| path-table has no more than �s(p
�), the Davenport-Shinzel number,

p�: size of dominant path set

Dominant Path Sets: Pb: set of all paths from s to d in Gb

N(P): set of nodes of path P ;
For P1; P2 2 P,

P1 dominates P2 if N(P1) � N(P2);
P�
b : set of all paths of Pb that are not dominated

p� =

�����
[
b

P�
b

�����
For certain networks p� = 2bn=2c

14

Finite Path-Tables

Davenport-Shinzel numbers: Sharir (1987)

�s(a) �

8><
>:

a if s = 1
2a� 1 if s = 2

O(a�(a)O(�(a)s�3) if s � 3

where �(:) is the slow growing Ackermann's inverse.
| �s(a) is almost linear in a for small s.

For quickest path problem, p� � m, and s = 1
path-table size: �1(m) � m

15

Conclusions

Other Formulations:

1. Queuing delays are statistically estimated

probabilistic gurantees can be given on the computed path

| using a similar algorithm

Research Issues:

1. Tighter bounds on size of dominant path set

| typical numbers for real networks

2. EÆcient path-table computation

3. Multiple paths

16

