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Abstract

In this paper, we consider the regulation control problem for a three-degree-of-freedom (3-
DOF), underactuated overhead crane system. Motivated by recent passivity-based controllers
for underactuated systems, we design several controllers that asymptotically regulate the planar
gantry position and the payload angle. Specifically, utilizing LaSalle’s Invariant Set Theorem,
we first illustrate how a simple proportional-derivative (PD) controller can be utilized to as-
ymptotically regulate the overhead crane system. Motivated by the desire to achieve improved
transient performance, we then design two nonlinear controllers that increase the coupling
between the planar gantry position and the payload angle.

1 Introduction
Precise payload positioning by an overhead crane (especially when performed by a operator using
only visual feedback to position the payload) is difficult due to the fact that the payload can exhibit
a pendulum-like swinging motion. These payload swings can result in several performance and
safety concerns including: i) damage to the payload (e.g., spillage or breakage), ii) damage to
the surrounding environment or personnel, and iii) large internal forces that can result in reduced
payload carrying capacity or premature failure of stressed parts. Motivated by the desire to achieve
fast and precise payload positioning while mitigating the above performance and safety concerns,
several researchers have developed various controllers for overhead crane systems. For example,
Yu et al. [16] utilized a time-scale separation approach to control a two degree-of-freedom (2-
DOF) overhead crane system; however, an approximate linearized model of the crane was utilized
to facilitate the construction of the error systems. In [15], Yashida et al. proposed a saturating
control law based on a guaranteed cost control method for a linearized version of the 2-DOF crane
system dynamics. Martindale et al. [9] utilized an approximate crane model to develop exact
model knowledge and adaptive controllers while Butler et al. [2] exploited a modal decomposition
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technique to develop an adaptive controller. In [3], Chung and Hauser designed a nonlinear controller
for regulating the swinging energy of the payload.
Several researchers have also examined the control problem for 3-DOF overhead crane systems.

Specifically, Moustafa and Ebeid [10] derived the nonlinear dynamic model for a 3-DOF overhead
crane and then utilized a standard linear feedback controller based on a linearized state space model.
In [11], Noakes and Jansen developed a generalized input shaping approach for the linearized crane
dynamics that exploited a notch filtering technique to control the motion of the bridge/trolley of
a 3-DOF overhead crane system. More recently, Lee [7] developed a nonlinear model for 3-DOF
overhead cranes based on a new 2-DOF swing angle definition. Based on this nonlinear model, Lee
then developed an anti-swing control law for the decoupled linearized dynamics. In [12], Sakawa
and Sano derived a nonlinear model for a 3-DOF crane system that was subsequently linearized
to facilitate the development of a control scheme that first transferred the load to a position near
the equilibrium point using an open-loop controller and then utilized a linear feedback controller to
stabilize the payload about the equilibrium point.
One of the limiting factors associated with the above overhead crane control designs is that

the system nonlinearities are often excluded from the closed-loop error system design and stability
analysis. To overcome this drawback, several researchers have investigated control approaches that
account for the nonlinear dynamics of overhead cranes and similar systems. For example in [14],
Teel utilized saturation functions to develop an output feedback controller which achieves a robust,
semi-global stability result for the ball-and-beam control problem. In [1], Burg et al. transformed
the nonlinear crane dynamics into a structure that resembled the ball-and-beam problem and then
adopted the research efforts of [14] to achieve asymptotic positioning from a large set of initial con-
ditions. More recently, Fantoni et al. [5] and Lozano et al. [8] proposed passivity-based controllers
for the inverted pendulum and the pendubot (i.e., an inverted pendulum-like robot with an unactu-
ated second link) based on the paradigm of driving the underactuated system to a homoclinic orbit
using an energy-based nonlinear controller and then switching to a linear controller to stabilize the
system around its unstable equilibrium point. Using similar stability analysis techniques, Collado
et al. [4] proposed a proportional-derivative (PD) controller for the overhead crane problem. In
[6], Kiss et al. developed a PD controller for a vertical crane-winch system that only requires the
measurement of the winch angle and its derivative rather than a cable angle measurement.
In this paper, we utilize a similar approach as provided by [8] to develop several controllers

for the 3-DOF overhead crane system. Specifically, utilizing LaSalle’s Invariant Set Theorem, we
illustrate how a simple PD controller can be utilized to asymptotically regulate the overhead crane
dynamics. Motivated by the desire for improved transient response, we design two nonlinear energy-
based coupling control laws that increase the coupling between the pendulum position and the
gantry position. Simulation results are provided, which illustrate that the increased coupling of
the nonlinear controllers results in improved transient response (e.g., reduced overshoot and faster
settling time) over the PD control law. The paper is organized as follows. In Section 2, we present
the nonlinear dynamic model of the overhead crane system and in Section 3, we rewrite the open-
loop system into a more convenient form. In Section 4, we develop a PD controller and two nonlinear
controllers and examine the stability of the controllers through a Lyapunov-like stability analysis.
The performance of the proposed controllers is illustrated through simulation results presented in
Section 5. Concluding remarks are given in Section 6.
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2 Dynamic Model
The dynamic model for a three degree-of-freedom (3-DOF) overhead crane system (see Figure 1) is
assumed to have the following form [10]

M(q)q̈ + Vm(q, q̇)q̇ +G(q) = u (1)

where q(t) ∈ R4 is defined as follows

q = [x y θ φ]T (2)

where x(t) ∈ R1 denotes the gantry position along the X-Coordinate axis, y(t) ∈ R1 denotes the
gantry position along the Y -Coordinate axis, θ(t) ∈ R1 denotes the payload angle with respect to
the vertical, φ(t) ∈ R1 denotes the projection of the payload angle along the X-Coordinate axis,
and M(q) ∈ R4×4, Vm(q, q̇) ∈ R4×4, G(q) ∈ R4, and u(t) ∈ R4 are defined as follows

M =


mp +mr +mc 0 mpL cos θ sinφ mpL sin θ cosφ

0 mp +mc mpL cos θ cosφ −mpL sin θ sinφ
mpL cos θ sinφ mpL cos θ cosφ mpL

2 + I 0
mpL sin θ cosφ −mpL sin θ sinφ 0 mpL

2 sin2 θ + I

 (3)

Vm =


0 0 −mpL sin θ sinφθ̇ +mpL cos θ cosφφ̇ mpL cos θ cosφθ̇ −mpL sin θ sinφφ̇

0 0 −mpL sin θ cosφθ̇ −mpL cos θ sinφφ̇ −mpL cos θ sinφθ̇ −mpL sin θ cosφφ̇

0 0 0 −mpL
2 sin θ cos θφ̇

0 0 mpL
2 sin θ cos θφ̇ mpL

2 sin θ cos θθ̇

 (4)

G = [0 0 mpgL sin θ 0]T (5)

u = [Fx Fy 0 0]T (6)

where mp,mr,mc ∈ R1 represent the payload mass, rail mass, and cart mass, respectively, I ∈ R1
denotes the moment of inertia of the payload, L ∈ R1 represents the length of the crane rod, g ∈ R1
represents the gravity effects, and Fx(t), Fy(t) ∈ R1 represent the control force inputs acting on the
cart and rail, respectively. Based on the structure of M(q) and Vm(q, q̇) given in (3) and (4), it is
straightforward to show that the following skew-symmetric relationship is satisfied

ξT
µ
1

2
Ṁ(q)− Vm(q, q̇)

¶
ξ = 0 ∀ ξ ∈ R4 (7)

where Ṁ(q) represents the time derivative of M(q) and that the inertia matrix M(q) can be upper
and lower bounded by the following inequalities

k1 kξk2 ≤ ξTM(q)ξ ≤ k2 kξk2 ∀ξ ∈ R4 (8)

where k1, k2 ∈ R1 are positive bounding constants. In a similar manner as in [1] and [9], we assume
that the dynamic model given in (1) has the following characteristics.

Assumption 1: The payload and the gantry are connected by a massless, rigid link.

Assumption 2: The angular position and velocity of the payload and the planar position and
velocity of the gantry are measurable.
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Assumption 3: The gantry mass and the length of the connecting rod are exactly known.

Assumption 4: The ball joint that connects the payload link to the gantry is frictionless and that
this joint does not rotate about the connecting rod (i.e., the payload does not rotate about
the rod axis).

Assumption 5: The angular position of the payload mass is restricted according to following
inequality

−π

2
< θ(t) <

π

2
(9)

where θ(t) is measured from the vertical position (see Figure 1).

X
Y

Z

mr

XYZ: Fixed 
coordinate system

mc

mp

θ

φφφφ

Figure 1: 3-DOF Overhead Crane System

Remark 1 Note that the model given by (1) could be modified to include other dynamic effects as-
sociated with the gantry dynamics (e.g., gantry friction, viscous damping coefficients, mass moment
of inertia of the gantry and rail motors, etc.); however, these additional dynamic effects were not
included in the model since these effects can be directly cancelled by the controller.

3 Open-Loop System Development
To express (1) in a form that facilitates the subsequent control development and stability analysis,
we premultiply both sides of (1) by M−1(q) to obtain the following expression

q̈ =M−1 (u− Vmq̇ −G) (10)

where M−1(q) ∈ R4×4 is guaranteed to exist due to the fact that the determinant of M(q), denoted
by det(M), is a positive function as shown below

det(M) = I2 (mp +mc) (mp +mr +mc) +mpL
2I
£
(mp +mr +mc)mc

¡
1 + sin2 θ

¢
(11)

+(mp +mc)mp sin
2 θ +mrmp

¡
sin2 φ+ 2 sin2 θ cos2 φ

¢¤
+m2

pL
4 sin2 θ

¡
mrmp sin

2 θ cos2 φ+mc

¡
mr +mc +mp sin

2 θ
¢¢
.
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After substituting (3), (4), (5), (6) and the expression for M−1(q) into (10) and performing some
algebraic manipulation, we can rewrite (10) as follows

ẍ =
1

det(M)
(p11Fx + p12Fy + w1) (12)

ÿ =
1

det(M)
(p12Fx + p22Fy + w2) (13)

where the measurable auxiliary terms p11(q), p12(q), p22(q), w1(q, q̇), w2(q, q̇) ∈ R1 are defined as
follows

p11 = m2
pL

2I
¡
sin2 φ+ 2 sin2 θ cos2 φ

¢
+mpI

2 +mcmpL
4 sin2 θ (14)

+mcmpL
2I
¡
1 + sin2 θ

¢
+mcI

2 +m3
pL

4 cos2 φ sin4 θ

p12 = −m3
pL

4 sinφ cosφ sin4 θ −m2
pL

2I sinφ cosφ
¡
sin2 θ − cos2 θ¢ (15)

p22 = m3
pL

4 sin4 θ sin2 φ+m2
pL

2I
£
1 +

¡
sin2 θ − cos2 θ¢ sin2 φ¤ (16)

+(mp +mr +mc) I
2 + (mr +mc)m

2
pL

4 sin2 θ

+(mr +mc)mpL
2I
¡
1 + sin2 θ

¢
w1 = mpL sin θ sinφ

£
(mp +mc) I +mpmcL

2 sin2 θ
¤

(17)h
φ̇
2 ¡
mpL

2 sin2 θ + I
¢
+ θ̇

2 ¡
mpL

2 + I
¢i

−2ImpLθ̇φ̇ cos θ cosφ
£
(mp +mc) I +mpL

2
¡
mc +mp sin

2 θ
¢¤

+m2
pgL

2 sin θ cos θ sinφ
£
(mp +mc) I +mpmcL

2 sin2 θ
¤

w2 = mpL sin θ cosφ
£
(mp +mr +mc) I + (mr +mc)mpL

2 sin2 θ
¤

(18)£
d2
¡
mpL

2 sin2 θ + I
¢
+ p2

¡
mpL

2 + I
¢¤

+2mpLI θ̇φ̇ cos θ sinφ
£
(mp +mr +mc)

¡
mpL

2 + I
¢−m2

pL
2 cos2 θ

¤
+mpgL sin θ

£
(mr +mc)m

2
pL

3 sin2 θ cos θ cos φ

+(mr +mc +mp)mpLI cos θ cosφ] .

In order to write the open-loop dynamics given in (12) and (13) in a more compact form for the
subsequent control development and stability analysis, we define the auxiliary signal r(t) ∈ R2 as
follows

r = [x y]T . (19)

After taking the second time-derivative of r(t) and then utilizing the expressions given in (12)-(18),
we can rewrite the open-loop dynamics given in (12) and (13) as follows

r̈ =

·
ẍ
ÿ

¸
=

1

det(M)
(PF +W ) (20)

where P (q) ∈ R2×2 and W (q, q̇) ∈ R2 are defined as follows

P =

·
p11 p12
p12 p22

¸
W =

·
w1
w2

¸
(21)
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and F (t) ∈ R2 is defined below
F = [Fx Fy]

T . (22)

Given the expressions in (14)-(16), it is straightforward to prove that

p11 > 0 and p11p22 − p212 ≥ mp (mp +mr +mc) I
4. (23)

From the expressions given in (21) and (23), we can see that P (q) is positive-definite, symmetric,
and invertible, where the inverse of P (q), denoted by P−1(q), is also positive-definite and symmetric.
To facilitate the subsequent Lyapunov-based control design, we will utilize the energy of the

overhead system, denoted by E(q, q̇) ∈ R1, and defined as follows

E(q, q̇) =
1

2
q̇TM(q)q̇ +mpgL(1− cos(θ)) ≥ 0. (24)

After taking the time derivative of (24), substituting (1) forM(q)q̈(t), and canceling common terms,
we obtain the following expression for the time derivative of E(q, q̇)

Ė = ṙTF (25)

where (3), (4), and (7) were utilized.

4 Control Design and Analysis
Our control objective is the regulation of the planar gantry position of the overhead crane to a
constant desired position, denoted by rd ∈ R2, which is explicitly defined as

rd = [xd yd]
T . (26)

In addition, the payload angle θ(t) must also be regulated to zero. To quantify the control objective
of regulating the overhead crane to a constant desired position, we define a gantry position error
signal e(t) ∈ R2 as follows

e(t) = r − rd. (27)

In the subsequent control development, we will design a proportional-derivative control law and two
nonlinear controllers to achieve the above control objective.

Remark 2 The control objective is defined in terms of regulating the gantry position and the angle
of the payload with the vertical. The problem of regulating the projection of the payload angle along
the X-Coordinate axis, denoted by φ(t), is not required. That is, if the payload angle, denoted by
θ(t), is regulated to zero, then we can see from Figure 1 that the payload has been regulated to the
desired location.

4.1 Proportional-Derivative Control Law

Based on the subsequent stability analysis, we design the following proportional-derivative (PD)
control law

F =
−kpe− kdṙ

kE
(28)

where kd, kE, kp ∈ R1 are positive constant control gains.
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Theorem 1 The controller given in (28) ensures asymptotic regulation of the overhead crane sys-
tem in the sense that

lim
t→∞

¡
x(t) y(t) θ(t)

¢
=
¡
xd yd 0

¢
(29)

where xd and yd were defined in (26).

Proof: To prove (29), we define a nonnegative function V1(t) ∈ R1 as follows

V1 = kEE +
1

2
kpe

T e. (30)

After taking the time derivative of (30) and then substituting (25) and the time derivative of (27)
into the resulting expression, we can rewrite (30) as follows

V̇1 = ṙ
T (kEF + kpe) . (31)

After substituting (28) into (31) for F (t) and then cancelling common terms, we obtain the following
expression

V̇1 = −kdṙT ṙ. (32)

Based on the expressions given in (8), (24), (27), (30) and (32), it is clear that the origin of the
closed-loop system is stable in the sense of Lyapunov [13] and that r(t), e(t), q̇(t) ∈ L∞. Based on the
fact that r(t), e(t), q̇(t) ∈ L∞, we can utilize (2) and (19) to prove that x(t), ẋ(t), y(t), ẏ(t), ṙ(t), θ̇(t),
φ̇(t) ∈ L∞. Given that e(t), ṙ(t) ∈ L∞, it is clear from (28) that F (t) ∈ L∞. Finally, from (6) and
(22), we can prove that Fx(t), Fy(t), u(t) ∈ L∞.
Based on the fact that all of the closed-loop signals remain bounded, we can now employ LaSalle’s

Invariance Theorem to prove (29). To this end, we define Γ as the set of all points where

V̇1 = 0. (33)

In the set Γ, it is clear from (32) and (33) that

ṙ(t) = 0 r̈(t) = 0, (34)

and hence, we can conclude from (19), (30), (33), and (34) that x(t), y(t), and V1(t) are constant,
and that

ẍ(t) = 0 ÿ(t) = 0. (35)

Furthermore, from (25), (27), and (34), it is clear that

Ė(q, q̇) = ė(t) = 0. (36)

Based on (36), it is clear that E(q, q̇) and e(t) are constant, and hence, from (28) and (34), it is
clear that F (t) is constant. To complete the proof, we must analyze the stability of the system
for the case when θ̇ = 0 and when θ̇ 6= 0. In this analysis, given in Appendix A, we prove the
result given in (29) under the proposition that θ̇ = 0 and that the proposition that θ̇ 6= 0 leads to
contradictions, and hence, is an invalid proposition.

Remark 3 In the previous stability analysis, we shown that the control objective is met and that
all signals in the dynamics and the controller remain bounded for all time except for the signal φ(t)
(Note that by assumption, the payload angle, denoted by θ(t), is assumed to be bounded). We note
that the boundedness of φ(t) is insignificant from a theoretical point of view since φ(t) only appears
in the dynamics and control as arguments of trigometric functions. We also note that the simulation
results for all of the controllers indicate that the signal φ(t) remains well-behaved and is driven to
constant value.
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Remark 4 Heuristically, the only way for the energy from the payload motion to be dissipated
is through the coupling between the payload dynamics and the gantry dynamics. That is, a PD
feedback loop at the gantry creates an artificial spring/damper system which absorbs the payload
energy through the natural gantry/payload coupling, however, from our experience with many control
experiments on overhead crane testbeds, we believe that a PD feedback loop at the gantry will always
provide poor performance because if the gantry friction is not compensated for perfectly (and it
never will be), then the uncompensated gantry friction effects tend to retard the natural coupling
between the gantry/payload dynamics, and hence, prevent payload energy from being dissipated by
the PD feedback loop at the gantry. In the following sections, we develop controllers that may
improve the performance of the PD feedback loop at the gantry, due to the incorporation of additional
nonlinear terms in the control law that depend on the payload dynamics. Although the subsequent
controllers yield the same stability result as the previous controller, we believe that the increase in
gantry/payload coupling due to the additional nonlinear terms will result in improved performance
when compared to the simple gantry PD controller.

4.2 E2 Coupling Control Law

Based on previous work presented in [8] for a 2-DOF inverted pendulum, we design the following
E2 coupling control law1

F = [Ω]−1
µ
−kdṙ − kpe− kv

det(M)
W

¶
(37)

where Ω(t) ∈ R2×2 is an auxiliary positive-definite, invertible matrix2 defined as follows

Ω = kEEI2 +
kv

det(M)
P (38)

kE, kp, kd, kv ∈ R1 are positive constant control gains, I2 denotes the standard 2×2 identity matrix,
and det(M), P (q), and W (q, q̇) were defined in (11) and (21).

Theorem 2 The controller given in (37) ensures asymptotic regulation of the overhead crane sys-
tem in the sense that

lim
t→∞

¡
x(t) y(t) θ(t)

¢
=
¡
xd yd 0

¢
(39)

where xd and yd were defined in (26).

Proof: See Appendix B.

4.3 Gantry Kinetic Energy Coupling Control Law

To illustrate how additional controllers can also be derived, we design the following nonlinear
coupling control law3

F =
−kdṙ − kpe− kvP−1W − 1

2
kv
¡
d
dt
(det(M)P−1)

¢
ṙ

kE + kv
(40)

1The control strategy is called an E2 coupling control law because its structure is motivated by a squared energy
term in the Lyapunov function and an additional gantry squared velocity term in the Lyapunov function.

2Since P and I2 are positive definite matrices, and kE, kv, E(q, q̇), and det(M(q)) are positive scalars, it is clear
that Ω(t) is positive definite and invertible.

3The control strategy is called a gantry kinetic energy coupling control law because its structure is derived from
an additional gantry kinetic energy-like term in the Lyapunov function.
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Table 1: Control Gains

PD Control
Law

E2 Coupling
Control Law

Gantry Kinetic Energy
Coupling Control Law

kd 102 125.3 350
kp 45 50 120
kE 1 0.001 0.4
kv Not Applicable 50 0.6

where kE, kp, kd, and kv ∈ R1 are positive constant control gains, and det(M), P (q), and W (q, q̇)
were defined in (11) and (21).

Theorem 3 The controller given in (40) ensures asymptotic regulation of the overhead crane sys-
tem in the sense that

lim
t→∞

¡
x(t) y(t) θ(t)

¢
=
¡
xd yd 0

¢
(41)

where xd and yd were defined in (26).

Proof: See Appendix C.

5 Simulation Results
To illustrate the performance of the proposed controllers, we simulated the 3-DOF crane system
given in (1), where the crane parameters were selected as follows

mp = 160 [kg], mc = 23 [kg], mr = 190 [kg], I = 1.5 [kg.m2], L = 2.5 [m] (42)

and the desired position of the crane gantry was selected as follows£
xd yd

¤T
=
£
10 3

¤T
. (43)

For each of the simulations, the initial conditions were set to zero and the control gains were tuned
until the best performance was achieved. The resulting control gains from each controller is given
in Table 1.
The resulting gantry position error, payload angle, and the input force are shown in Figure 2

for the PD control law, Figure 3 for the E2 coupling control law, and Figure 4 for the gantry kinetic
energy coupling control law. A summary of the performance of the controllers given in (28), (37)
and (40) is provided in Table 2. In Table 2, the settling time is defined as the interval between the
starting time and the time when the angle θ(t) remained within ±0.5 degrees of the equilibrium
position and the response of x(t) and y(t) remained within 5% of the final values. The percent
overshoot is defined as

Mp =
xmax − xd

xd
× 100%, (44)

where xmax denotes the maximum gantry overshoot position.
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Table 2: Performance Comparison

PD Control
Law

E2 Coupling
Control Law

Gantry Kinetic Energy
Coupling Control Law

X Percent Overshoot 26% No Overshoot No Overshoot
Y Percent Overshoot 12% 8.9% No Overshoot
Settling Time
( |θ| ≤ 0.5 deg) 21.6[sec] 11.9[sec] 8.2[sec]
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Figure 2: Results for the PD Controller
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Figure 3: Results for the E2 Coupling Control Law
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Figure 4: Results for the Gantry Kinetic Energy Coupling Control Law

6 Conclusion
In this paper, we presented three controllers for an overhead crane system. By utilizing a Lyapunov-
based stability analysis along with LaSalle’s Invariance Theorem, we proved asymptotic regulation
of the gantry and payload position for a PD controller and two nonlinear controllers. Simulation
results were utilized to demonstrate that the increased coupling between the gantry and payload
that results from the additional nonlinear feedback terms in the nonlinear coupling control laws,
resulted in improved transient response. Future work will focus on comparing the performance of
the PD controller with the nonlinear coupling control laws through experimental results obtained
from an overhead crane system with a gantry that moves in a 2-DOF Cartesian plane.
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A Proportional-Derivative Control Law Analysis
Case 1a: θ̇ = 0 and φ̇ = 0

Based on the proposition that θ̇ = 0 and φ̇ = 0, it is straightforward to prove that

θ̈ = 0 φ̈ = 0. (45)

By rearranging the first two rows of the expression given in (1), we can obtain the following expres-
sions

Fx
mpL

=
mp +mr +mc

mpL
ẍ+ cos θ sinφθ̈ + sin θ cosφφ̈− sin θ sinφ

³
θ̇
2
+ φ̇

2
´
+ 2 cos θ cosφθ̇φ̇ (46)

Fy
mpL

=
mp +mc

mpL
ÿ + cos θ cosφθ̈ − sin θ sinφφ̈− sin θ cos φ

³
θ̇
2
+ φ̇

2
´
− 2 cos θ sinφθ̇φ̇. (47)
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Based on the expression given in (35), (45)-(47), and the proposition that θ̇ = 0 and φ̇ = 0, we can
conclude that

Fx = Fy = 0. (48)

From (22), (28), (34), and (48), it is clear that

e(t) = 0. (49)

Furthermore, by rearranging the third row of the vector given in (1), we can obtain the following
expression

θ̈ = γ3 sin θ cos θφ̇
2 − γ2 sin θ −

mpL

mpL2 + I
(cos θ sinφẍ+ cos θ cosφÿ) (50)

where (2)-(6) were utilized and γ2, γ3 ∈ R1 are positive constants defined as follows

γ2 =
mpgL

mpL2 + I
γ3 =

mpL
2

mpL2 + I
. (51)

Based on (35), (45), and the proposition that φ̇ = 0, we can utilize (50) to prove that

sin θ = 0, (52)

and hence, from (9), it is clear that
θ(t) = 0. (53)

Given (49) and (53), we can utilize (19), (26), and (27) to prove the validity of (29) under the
proposition that θ̇(t) = 0 and φ̇ = 0.

Case 1b: θ̇ = 0 and φ̇ 6= 0

By rearranging the fourth row of the vector given in (1), we obtain the following expression

γ1(θ)φ̈ = −2 sin θ cos θθ̇φ̇−
µ
sin θ cosφẍ− sin θ sinφÿ

L

¶
(54)

where γ1(θ) ∈ R1 is defined as follows

γ1(θ) =

µ
sin2 θ +

I

mpL2

¶
. (55)

Based on (35), (54), and the proposition that θ̇ = 0, it is clear that

φ̈ = 0 θ̈ = 0, (56)

and hence, θ(t) and φ̇(t) are constant. From (35), (46), (47), (56), the fact that F (t) remains
constant, and the proposition that φ̇ 6= 0, it is straightforward to see that

Fx = −mpL sin θ sinφφ̇
2

(57)

Fy = −mpL sin θ cosφφ̇
2
. (58)

To continue the analysis, we consider the cases of sin θ = 0 and sin θ 6= 0. Under the additional
proposition that sin θ 6= 0, it is clear to see from (57) and (58) that sinφ, cosφ, and φ(t) must
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be constant since Fx(t) and Fy(t) are constant. However, the conclusion that φ(t) is constant,
contradicts with the proposition that φ̇ 6= 0. Under the additional proposition that sin θ = 0, we
can use (57) and (58) to prove that

Fx = Fy = sin θ = 0. (59)

Given (9), (22), (28), (34), and (59), it is clear that

e(t) = θ(t) = 0. (60)

From (60), we can utilize (19), (26), and (27) to prove (29) under the propositions that θ̇(t) = 0,
φ̇ 6= 0, and sin θ = 0. ¥

Case 2: θ̇(t) 6= 0

To simplify the stability analysis under the proposition that θ̇(t) 6= 0, we first note that if either
sin θ = 0 or cos θ = 0, then θ(t) would be constant, and hence, the proposition that sin θ = 0 or
cos θ = 0 would lead to a contradiction with the proposition that θ̇(t) 6= 0. Since θ(t) is a continuous
function, it is clear that both sin θ 6= 0 and cos θ 6= 0. This fact will be utilized in the subsequent
analysis.
To facilitate the stability analysis under the proposition that θ̇(t) 6= 0, we rewrite each row of

(1) as follows
sinφP1 + cos φP2 = S1 (61)

cosφP1 − sinφP2 = S2 (62)

θ̈ = −γ2 sin θ + γ3 sin θ cos θφ̇
2
+ γ3S3 (63)

γ1φ̈ = −2 sin θ cos θθ̇φ̇+ S4 (64)

where P1(t), P2(t), S1(t), S2(t), S3(t), S4(t) ∈ R1 are defined as follows

P1 = sin θ
³
γ3 cos

2 θφ̇
2 − γ2 cos θ −

³
θ̇
2
+ φ̇

2
´´
+ S3γ3 cos θ (65)

P2 = φ̈ sin θ + 2θ̇φ̇ cos θ (66)

S1 =
1

mpL
(Fx − (mp +mr +mc) ẍ) (67)

S2 =
1

mpL
(Fy − (mp +mc) ÿ) (68)

S3 = −
·
cos θ sinφẍ+ cos θ cosφÿ

L

¸
(69)

S4 = −
·
sin θ cosφẍ− sin θ sinφÿ

L

¸
(70)

where (63) has been substituted into (65) for θ̈(t), γ1(θ) was defined in (55), and γ2, γ3 were defined
in (51). After taking the time derivative of the expressions given in (61) and (62), we obtain the
following expressions

cosφφ̇P1 + sinφṖ1 − sinφφ̇P2 + cosφṖ2 = Ṡ1 (71)

− sinφφ̇P1 + cosφṖ1 − cosφφ̇P2 − sinφṖ2 = Ṡ2 (72)
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where Ṗ1(t), Ṗ2(t), Ṡ1(t), and Ṡ2(t) can be written as follows

Ṗ1 = θ̇
³
−γ2

¡
1− 2 sin2 θ¢+ γ3 cos

3 θφ̇
2 − cos θ

³
θ̇
2
+ φ̇

2
´´
− 2γ3 sin θφ̇

³
γ1φ̈

´
(73)

−2 sin θθ̇θ̈ − 2γ3 cos θ sin2 θθ̇φ̇
2 − S3γ3 sin θθ̇ + Ṡ3γ3 cos θ

Ṗ2 = cos θθ̇φ̈+ sin θφ
(3) − 2

³
sin θθ̇

2
φ̇− cos θθ̈φ̇− cos θθ̇φ̈

´
(74)

Ṡ1 =
1

mpL

³
Ḟx − (mp +mr +mc)x

(3)
´

(75)

Ṡ2 =
1

mpL

³
Ḟy − (mp +mc) y

(3)
´

(76)

and the expression for Ṡ3(t) is given below

Ṡ3 =
1

L

³
θ̇ sin θ sinφẍ− φ̇ cos θ cosφẍ− cos θ sinφx(3)

´
(77)

+
1

L

³
θ̇ sin θ cosφÿ + φ̇ cos θ sinφÿ − cos θ cosφÿ(3)

´
.

After substituting (63) and (64) into (73) for θ̈(t) and φ̈(t), respectively, and then performing some
algebraic manipulation, we obtain the following expression

Ṗ1 = θ̇
³
−γ2

¡
1− 4 sin2 θ¢+ γ3 cos

3 θφ̇
2 − cos θ

³
θ̇
2
+ φ̇

2
´´

(78)

−γ3
³³
2φ̇S4 + 3S3θ̇

´
sin θ − Ṡ3 cos θ

´
.

After multiplying both sides of the expression given in (71) by sinφ, multiplying both sides of the
expression given in (72) by cosφ, and then adding the resulting expressions, the following expression
is obtained

Ṗ1 − φ̇P2 = Ṡ1 sinφ+ Ṡ2 cosφ. (79)

By multiplying both sides of (79) by γ1(θ), substituting (66) and (78) into the resulting expression
for P2(t) and Ṗ1(t), and then dividing the resulting expression by θ̇(t), we obtain the following
expression

γ1P3 − 2
I

mpL2
cos θφ̇

2
=
S5

θ̇
(80)

where (64) was utilized and the auxiliary expressions P3(t) and S5(t) are defined as follows

P3 = −γ2
¡
1− 4 sin2 θ¢+ γ3 cos

3 θφ̇
2 − cos θ

³
θ̇
2
+ φ̇

2
´

(81)

S5 = γ1

³
Ṡ1 sinφ+ Ṡ2 cosφ+ γ3

³³
3S3θ̇ + 2φ̇S4

´
sin θ − Ṡ3 cos θ

´´
(82)

+S4φ̇ sin θ.

After taking the time derivative of (80), we obtain the following expression

γ1Ṗ3 + 2 sin θ cos θθ̇P3 + 2
I

mpL2

³
sin θθ̇φ̇

2 − 2 cos θφ̇φ̈
´
=
Ṡ5θ̇ − S5θ̈

θ̇
2 (83)

15



where the expressions for Ṗ3(t) and Ṡ5(t) are given below

Ṗ3 = sin θθ̇P4 − 2γ3
³
S3θ̇ cos θ + S4 cos θφ̇

´
(84)

Ṡ5 = 2 sin θ cos θθ̇
³
Ṡ1 sinφ+ Ṡ2 cosφ+ γ3

³³
3S3θ̇ + 2φ̇S4

´
sin θ − Ṡ3 cos θ

´´
(85)

+γ1S̈1 sinφ+ γ1Ṡ1φ̇ cosφ+ γ1S̈2 cosφ− γ1Ṡ2 sinφφ̇

+γ1γ3

³³
3Ṡ3θ̇ + 3S3θ̈ + 2φ̈S4 + 2φ̇Ṡ4

´
sin θ +

³
3S3θ̇ + 2φ̇S4

´
cos θθ̇

´
−γ1γ3S̈3 cos θ + γ1γ3Ṡ3 sin θθ̇ + Ṡ4φ̇ sin θ + S4φ̈ sin θ + S4φ̇ cos θθ̇

where (63) and (64) were utilized, and the definitions for P4(t), S̈1(t), S̈2(t), S̈3(t) and Ṡ4(t) are
given by the following expressions

P4 = 10γ2 cos θ − γ3 cos
2 θφ̇

2
+
³
θ̇
2
+ φ̇

2
´

(86)

S̈1 =
1

mpL

³
F̈x − (mp +mr +mc)x

(4)
´

(87)

S̈2 =
1

mpL

³
F̈y − (mp +mc) y

(4)
´

(88)

S̈3 =
1

L
sin θ sinφ

³
θ̈ẍ+ 2θ̇x(3) − 2θ̇φ̇ÿ

´
+
1

L
sin θ cosφ

³
2θ̇φ̇ẍ+ θ̈ÿ + 2θ̇y(3)

´
(89)

+
1

L
cos θ sinφ

³
φ̇
2
ẍ+ θ̇

2
ẍ+ φ̈ÿ + 2φ̇y(3) − x(4)

´
+
1

L
cos θ cosφ

³
−φ̈ẍ− 2φ̇x(3) + θ̇

2
ÿ + φ̇

2
ÿ − y(4)

´

Ṡ4 = − 1
L

³
θ̇ cos θ cosφẍ− φ̇ sin θ sinφẍ+ sin θ cosφx(3)

´
(90)

+
1

L

³
θ̇ cos θ sinφÿ + φ̇ sin θ cosφÿ + sin θ sinφÿ(3)

´
.

By substituting (84) into (83) for Ṗ3(t) and then multiplying the resulting expression by γ1(θ), we
can obtain the following expression

sin θθ̇

µ
γ21P4 + 2γ1 cos θP3 +

2I

mpL2
φ̇
2 ¡

γ1 + 4 cos
2 θ
¢¶
= S6 (91)

where (64) was utilized, and S6(t) is defined as follows

S6 = γ1

Ã
Ṡ5θ̇ − S5θ̈

θ̇
2 +

4I cos θφ̇

mpL2
S4

!
+ γ21

³
2γ3

³
S3 cos θθ̇ + S4 cos θφ̇

´´
. (92)

After dividing (91) by sin θθ̇(t) and then substituting (80) into the resulting expression for γ1(θ)P3(t),
the following expression is obtained

γ21P4 +
2I

mpL2
φ̇
2 ¡

γ1 + 6 cos
2 θ
¢
=

S6

sin θθ̇
− 2S5 cos θ

θ̇
. (93)
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After multiplying (80) by γ1(θ), multiplying (93) by cos θ, and then adding the resulting products,
we obtain the following expression

γ21 (P3 + P4 cos θ) +
12I

mpL2
cos3 θφ̇

2
= S7 (94)

where S7(t) is defined as follows

S7 =

µ
S6

sin θθ̇
− 2S5 cos θ

θ̇

¶
cos θ +

S5

θ̇
γ1. (95)

By utilizing (81) and (86), we can rewrite (94) as follows

γ2γ
2
1

¡
9− 6 sin2 θ¢+ 12I

mpL2
cos3 θφ̇

2
= S7. (96)

To continue the analysis, we take the time derivative of (96) as follows

4γ2 sin θ cos θθ̇γ1
¡¡
9− 6 sin2 θ¢− 3γ1¢+ 12I

mpL2
cos2 θφ̇

³
−3 sin θθ̇φ̇+ 2 cos θφ̈

´
= Ṡ7 (97)

where the time derivative of (95) is given by the following expression

Ṡ7 = −
µ
S6
sin θ

− 2S5 cos θ
¶
sin θ +

Ã
Ṡ6

sin θθ̇
− S6 cos θ

sin2 θ
− S6θ̈

sin θθ̇
2

!
cos θ (98)

−
Ã
2Ṡ5 cos θ

θ̇
− 2S5 sin θ − 2S5 cos θθ̈

θ̇
2

!
cos θ +

Ṡ5

θ̇
γ1 −

S5θ̈

θ̇
2 γ1

+2S5 sin θ cos θ

with the expression for Ṡ6(t) being given below

Ṡ6 = 2θ̇ sin θ cos θ

Ã
Ṡ5θ̇ − S5θ̈

θ̇
2 +

4I cos θφ̇

mpL2
S4

!
(99)

+γ1

Ã
S̈5θ̇ − S5θ(3)

θ̇
2 − 2θ̈

Ã
Ṡ5θ̇ − S5θ̈

θ̇
3

!!

+γ1

Ã
−4I sin θθ̇φ̇

mpL2
S4 +

4I cos θφ̈

mpL2
S4 +

4I cos θφ̇

mpL2
Ṡ4

!
+4γ1θ̇ sin θ cos θ

³
2γ3

³
S3 cos θθ̇ + S4 cos θφ̇

´´
+2γ21γ3

³
Ṡ3 cos θθ̇ − S3 sin θθ̇2 + S3 cos θθ̈

´
+2γ21γ3

³
Ṡ4 cos θφ̇− S4 sin θφ̇θ̇ + S4 cos θφ̈

´
with the expression for S̈5(t) being given below

S̈5 =
h
2
¡
cos2 θ − sin2 θ¢ θ̇2 + sin θ cos θθ̈i ³³Ṡ1 sinφ+ Ṡ2 cosφ´ (100)
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+γ3

³³
3S3θ̇ + 2φ̇S4

´
sin θ − Ṡ3 cos θ

´´
+γ1

³
S
(3)
1 sinφ+ 2S̈1 cosφφ̇+ Ṡ1

³
cosφφ̈− sinφφ̇2

´´
+γ1

³
S
(3)
2 cosφ− 2S̈2 sinφφ̇+ Ṡ2

³
− sinφφ̈− cosφφ̇2

´´
+3γ1γ3

³
S̈3 sin θθ̇ + 2Ṡ3

³
cos θθ̇

2
+ sin θθ̈

´
+ S3

³
− sin θθ̇3 + 3 cos θθ̇θ̈ + sin θθ(3)

´´
+2γ1γ3

³
S̈4 sin θφ̇+ 2Ṡ4

³
cos θθ̇φ̇+ sin θφ̈

´´
+2γ1γ3

³
+S4

³
− sin θθ̇2φ̇+ cos θθ̈φ̇+ 2 cos θθ̇φ̈+ sin θφ(3)

´´
−γ1γ3

³
S
(3)
3 cos θ − 2S̈3 sin θθ̇ + Ṡ3

³
− cos θθ̇2 − sin θθ̈

´´
+4 sin θ cos θθ̇

³
S̈1 sinφ+ Ṡ1φ̇ cosφ+ S̈2 cosφ− Ṡ2 sinφφ̇

´
+4γ3 sin θ cos θθ̇

³³
3Ṡ3θ̇ + 3S3θ̈ + 2φ̈S4 + 2φ̇Ṡ4

´
sin θ +

³
3S3θ̇ + 2φ̇S4

´
cos θθ̇

´
+4γ3 sin θ cos θθ̇

³
−S̈3 cos θ + Ṡ3 sin θθ̇

´
+ S̈4 sin θφ̇+ 2Ṡ4

³
sin θφ̈+ cos θθ̇φ̇

´
+S4

³
sin θφ(3) + 2 cos θθ̇φ̈− sin θθ̇2φ̇+ cos θθ̈φ̇

´
with the expressions for S(3)1 (t), S

(3)
2 (t), S

(3)
3 (t) and S̈4(t) being given below

S
(3)
1 =

1

mpL

¡
F (3)x − (mp +mr +mc) x

(5)
¢

(101)

S
(3)
2 =

1

mpL

¡
F (3)y − (mp +mc) y

(5)
¢

(102)

S
(3)
3 =

1

L

³
θ̇ cos θ sinφ+ sin θ cosφφ̇

´³
θ̈ẍ+ 2θ̇x(3) − 2θ̇φ̇ÿ

´
(103)

1

L
sin θ sinφ

³
θ(3)ẍ+ θ̈x(3) + 2

³
θ̇x(4) + θ̈x(3) − θ̈φ̇ÿ − θ̇φ̈ÿ − θ̇φ̇y(3)

´´
1

L

³
θ̇ cos θ cosφ− sin θ sinφφ̇

´³
2θ̇φ̇ẍ+ θ̈ÿ + 2θ̇y(3)

´
+
1

L
sin θ cosφ

³
2θ̈φ̇ẍ+ 2θ̇φ̈ẍ+ 2θ̇φ̇x(3) + θ(3)ÿ + 3θ̈y(3) + 2θ̇y(4)

´
+
1

L

³
−θ̇ sin θ sinφ+ cos θ cosφφ̇

´³
φ̇
2
ẍ+ θ̇

2
ẍ+ φ̈ÿ + 2φ̇y(3) − x(4)

´
+
1

L
cos θ sinφ

³
2φ̇φ̈ẍ+ 2θ̇θ̈ẍ+ φ̇

2
x(3) + θ̇

2
x(3) + φ(3)ÿ + 3φ̈y(3) + 2φ̇y(4) − x(5)

´
− 1
L

³
θ̇ sin θ cosφ+ cos θ sinφφ̇

´³
−φ̈ẍ− 2φ̇x(3) + θ̇

2
ÿ + φ̇

2
ÿ − y(4)

´
+
1

L
cos θ cosφ

³
−φ(3)ẍ− 3φ̈x(3) − 2φ̇x(4) + 2θ̇θ̈ÿ + 2φ̇φ̈ÿ + θ̇

2
y(3) + φ̇

2
y(3) − y(5)

´

S̈4 =
1

L
sin θ sinφ

³
φ̈ẍ+ 2φ̇x(3) − θ̇

2
ÿ − φ̇

2
ÿ + y(4)

´
(104)

+
1

L
cos θ sinφ

³
2θ̇φ̇ẍ+ θ̈ÿ + 2θ̇y(3)

´
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+
1

L
sin θ cosφ

³
θ̇
2
ẍ+ φ̇

2
ẍ+ φ̈ÿ ++2φ̇y(3) − x(4)

´
− 1
L
cos θ cos φ

³
θ̈ẍ+ 2θ̇x(3) − 2θ̇φ̇ÿ

´
.

After multiplying (97) by γ1(θ), we obtain the following expression

4γ2 sin θ cos θθ̇γ
2
1

¡¡
9− 6 sin2 θ¢− 3γ1¢ (105)

− 36I

mpL2
γ1 cos

2 θ sin θθ̇φ̇
2 − 48I

mpL2
sin θ cos4 θθ̇φ̇

2

= γ1Ṡ7 −
24I

mpL2
cos3 θφ̇S4

where (64) was utilized. After dividing (105) by
³
sin θ cos θθ̇

´
and utilizing (96), we obtain the

following expression

−12I cos θφ̇
2

mpL2
¡
8 cos2 θ + 3γ1

¢− 12γ2γ31 = S8 − 4S7 (106)

where S8(t) is defined as follows

S8 =

µ
1

sin θ cos θθ̇

¶µ
Ṡ7γ1 −

24I

mpL2
cos3 θφ̇S4

¶
. (107)

By multiplying (106) by cos2 θ(t) and then utilizing (96), we can rewrite (106) as follows¡
9− 6 sin2 θ¢ ¡8 cos2 θ + 3γ1¢− 12 cos2 θγ1 = µ S9

γ2γ
2
1

¶
(108)

where S9(t) is defined as follows

S9 = cos
2 θ (S8 − 4S7) + S7

¡
8 cos2 θ + 3γ1

¢
. (109)

Given the facts that Fx(t) and Fy(t) are constant and ẍ = 0 and ÿ = 0, it is clear that

F (k)x = 0, F (k)y = 0, k ≥ 1 (110)

x(k) = 0, y(k) = 0, k ≥ 2 (111)

and hence, the expressions given in (67)-(70), (75)-(77), (109), (85), (87)-(90), (92), (95), (76)-(104),
(107), and (109) can be utilized to prove that

Si = 0, Ṡi = 0, i = 1, 2, ...9. (112)

After some algebraic manipulation, we can now utilize (112) to rewrite (108) as follows¡
1 + 2 cos2 θ

¢µ
3

µ
1 +

I

mpL2

¶
+ 5 cos2 θ

¶
− 4 cos2 θ

µ
1 +

I

mpL2
− cos2 θ

¶
= 0. (113)

After some further algebraic manipulation, the expression given in (113) can be rewritten as follows

cos4 θ + α1 cos
2 θ + α2 = 0 (114)

where α1,α1 ∈ R1 are positive constants defined below

α1 =
1

2
+
1

7

I

mpL2
α2 =

3

14

µ
1 +

I

mpL2

¶
. (115)

Since the expression given in (114) it clearly invalid, we must conclude that the proposition that
θ̇(t) 6= 0 must be invalid, and hence, θ̇(t) = 0 and the analysis given in under this proposition can
be utilized to prove (29). ¥
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B E2 Coupling Control Law Stability Analysis
To prove (39), we define a nonnegative function V2(t) ∈ R1 as follows

V2 =
1

2
kEE

2 +
1

2
kpe

T e +
1

2
kvṙ

T ṙ. (116)

After taking the time-derivative of (116) and then substituting (20), (25), and the time derivative
of (27) into the resulting expression for r̈(t), Ė(q, q̇), and ė(t), respectively, we obtain the following
expression

V̇2 = ṙ
T

µ
ΩF +

kv
det(M)

W + kpe

¶
(117)

where (38) was utilized. After substituting (37) into (118) for F (t) and then cancelling common
terms, we obtain the following expression

V̇2 = −kdṙT ṙ. (118)

Based on the expressions given in (24), (27), (116), and (118), it is clear that the origin of the closed-
loop system is stable in the sense of Lyapunov [13] and that r(t), ṙ(t), e(t), q̇(t), E(q, q̇) ∈ L∞,
and hence, from (2) and (19) it is clear that x(t), ẋ(t), y(t), ẏ(t), θ̇(t), φ̇(t) ∈ L∞. Based on the
expressions given in (14)-(18), (11), (21), and (23), we can prove that det(M(q)), P (q), P−1(q),
W (q, q̇) ∈ L∞. Given (11), and the fact that E(q, q̇), P (q) ∈ L∞, we can utilize (38) to prove that
Ω(t) ∈ L∞. Given the following expression for the determinant of Ω(t)

det(Ω) = (kEE)
2 + kEE

kv
det(M)

(p11 + p22) +

µ
kv

det(M)

¶2 ¡
p11p22 − p212

¢
, (119)

it is easy to see from (11), (14)-(16), (23), and (24) that

det(Ω) ≥
µ

kv
det(M)

¶2
mp (mp +mr +mc) I

4. (120)

Based on the fact that det(M(q)), Ω(t) ∈ L∞, we can utilize (120) to prove that Ω−1(t) ∈ L∞.
Given that e(t), ṙ(t), det(M(q)), W (q, q̇), Ω−1(t) ∈ L∞, it is clear from (37) that F (t) ∈ L∞. From
(6) and (22), we can prove that Fx(t), Fy(t), u(t) ∈ L∞.
In a similar manner as in the proof of Theorem 1, we define Γ as the set of all points where

V̇2 = 0. (121)

In the set Γ, it is clear from (118) and (121) that

ṙ(t) = 0 r̈(t) = 0 (122)

and hence, we can utilize (19) and (121) to prove that x(t), y(t), and V2(t) are constant, and that

ẍ(t) = 0 ÿ(t) = 0. (123)

Furthermore, from (25) and (122), it is clear that

Ė(q, q̇) = 0 ė(t) = 0 (124)
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and hence, E(q, q̇) and e(t) are constant.
Similar to the proof of Theorem 1, we can now divide the rest of the analysis into two cases.

For the case of θ̇ = 0 and φ̇ = 0, we can easily follow Case 1a in the proof of Theorem 1 to prove
the result given by (39). For the other cases, we note that (20) can be utilized to rewrite (37) in
the following equivalent form4

F =
−kdṙ − kpe− kvr̈

kEE
. (125)

Based on the structure of (125), it is clear from (122), (124), and (125) that F (t) is constant, and
we can now utilize similar arguments as in the proof of Theorem 1 to prove the result given by (39).
¥

C Gantry Kinetic Energy Coupling Control Law Stability
Analysis

To prove (41), we define a nonnegative function V3(t) ∈ R1 as follows

V3 = kEE +
1

2
kvṙ

T
¡
det(M)P−1

¢
ṙ +

1

2
kpe

T e. (126)

After taking the time-derivative of (126) and then substituting (25) and the time derivative of (27)
for Ė(q, q̇) and ė(t), respectively, we obtain the following expression

V̇3 = ṙ
T

µ
kEF + kv

¡
det(M)P−1

¢
r̈ +

1

2
kv

µ
d

dt

¡
det(M)P−1

¢¶
ṙ + kpe

¶
. (127)

By substituting (20) into (127) for r̈(t), we obtain the following expression

V̇3 = ṙ
T

µ
(kE + kv)F + kvP

−1W +
1

2
kv

µ
d

dt

¡
det(M)P−1

¢¶
ṙ + kpe

¶
. (128)

After substituting (40) for F (t) and then simplifying the resulting expression, we can rewrite (128)
as follows

V̇3 = −kdṙT ṙ. (129)

Based on the expressions given in (24), (27), (126), and (129), it is clear that the origin of the closed-
loop system is stable in the sense of Lyapunov [13] and that r(t), ṙ(t), e(t), q̇(t) ∈ L∞, and hence,
from (2) and (19) it is clear that x(t), ẋ(t), y(t), ẏ(t), ṙ(t), θ̇(t), φ̇(t) ∈ L∞. Based on the expressions
in given in (11), (14)-(18), (21), and (23), we can prove that det(M(q)), P−1(q),W (q, q̇) ∈ L∞.
Based on the fact that

d

dt
P−1 = −P−1

µ
d

dt
P

¶
P−1

we can rewrite d
dt
(det(M)P−1) as follows

d

dt

¡
det(M)P−1

¢
=

µ
d

dt
det(M)

¶
P−1 − det(M)P−1

µ
d

dt
P

¶
P−1 (130)

4Since either θ̇(t) 6= 0 or ϕ̇(t) 6= 0, we can use (24) to show that E(q, q̇) > 0, and hence, the denominator of (125)
does not go to zero for the remaining cases.
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where the time derivative of the determinant of M(q) is given by the following expression

d

dt
det(M) = mpL

2I
h
((mp +mr +mc)mc + (mp +mc)mp)

³
2 sin θ cos θθ̇

´
(131)

+2mrmp cosφ
³
sinφφ̇+ 2 sin θ cos θθ̇ cosφ− 2 sin2 θ sinφφ̇

´i
+m2

pL
4
³
2 sin θ cos θθ̇

´ £
mrmp sin

2 θ cos2 φ+mc

¡
mr +mc +mp sin

2 θ
¢¤

+m2
pL

4 sin2 θ
h
mrmp

³³
2 sin θ cos θθ̇ cos2 φ

´
−
³
2 sin2 θ cosφ sinφφ̇

´´
+mcmp

³
2 sin θ cos θθ̇

´i
and the time derivative of each element of the auxiliary matrix P (q) is given below

ṗ11 = m2
pL

2I
³
2 sinφ cosφφ̇+ 4 sin θ cos θ cos2 φθ̇ − 4 sin2 θ sinφ cosφφ̇

´
(132)

+2mcmpL
4 sin θ cos θθ̇ + 2mcmpL

2I sin θ cos θθ̇

−2m3
pL

4 sin4 θ sinφ cosφφ̇+ 4m3
pL

4 cos2 φ sin3 θ cos θθ̇

ṗ12 = −m3
pL

4
¡
cos2 φ− sin2 φ¢ sin4 θφ̇− 4m3

pL
4 sinφ cosφ sin3 θ cos θθ̇ (133)

−m2
pL

2I
¡
cos2 φ− sin2 φ¢ ¡sin2 θ − cos2 θ¢ φ̇− 4m2

pL
2I sinφ cosφ sin θ cos θ̇θ

ṗ22 = 4m2
pL

2 sin θ cos θ sin2 φθ̇
¡
mpL

2 sin2 θ + I
¢

(134)

+2m2
pL

2 sinφ cosφφ̇
£
mpL

2 sin4 θ + I
¡
sin2 θ − cos2 θ¢¤

+2 (mr +mc)mpL
2 sin θ cos θθ̇

¡
mpL

2 + I
¢
.

Based on the fact that q(t), q̇(t), P−1(q) ∈ L∞, it is clear that the expressions given in (130)-
(134) can be utilized to prove that d

dt
(det(M)P−1) ∈ L∞. Given that e(t), ṙ(t), P−1(q), W (q, q̇),

d
dt
(det(M)P−1) ∈ L∞, it is straightforward from (40) that F (t) ∈ L∞. Finally, from (6) and (22),

we can prove that Fx(t), Fy(t), u(t) ∈ L∞.
In a similar manner as in the proof of Theorem 1, we define Γ as the set of all points where

V̇3 = 0. (135)

In the set Γ, it is clear from (129) and (135) that

ṙ(t) = 0 r̈(t) = 0 (136)

and hence, we can conclude from (19) that x(t), y(t), and V3(t) are constant, and that

ẍ(t) = 0 ÿ(t) = 0. (137)

Furthermore, from (25) and (136), it is clear that

Ė(q, q̇) = 0 ė(t) = 0 (138)

and hence, E(q, q̇) and e(t) are constant.
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To complete the remaining analysis, we note that (20) can be utilized to rewrite (40) in the
following equivalent form

F =
−kdṙ − kpe− kv (det(M)P−1) r̈ − 1

2
kv
¡
d
dt
(det(M)P−1)

¢
ṙ

kE
. (139)

Based on the structure of (139), it is clear from (136) and (138) that F (t) is constant, and we can
now utilize similar arguments as given in the proof of Theorem 1 to prove the result given in (41).
¥
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